

RELATING EMPIRICAL TO MOLECULAR

	EMPIRICAL FORMULA	e.f. molar mass	m.f. molar mass	MOLECULAR FORMULA
EXAMPLE #1	C ₄ H ₈ NO		258.24 g/mol	
EXAMPLE #2	C ₇ H ₁₂		192.24 g/mol	
		L	I	

4

EXAMPLE #1

Caffeine is the component of coffee and tea that stimulates the cerebral cortex. A typical cup of coffee or tea contains about 0.10 g of caffeine. Combustion analysis indicates that caffeine is 49.47% carbon, 5.20% hydrogen, 16.48% oxygen, and the remainder nitrogen. If the molar mass of caffeine is 194.22 g/mol, what is the empirical and molecular formula of caffeine?

EXAMPLE #2

Serotonin is a compound that conducts nerve impulses in the brain and influences the moods we experience. It is composed of 68.2% carbon, 6.86% hydrogen, 15.9% nitrogen, and 9.08% oxygen. Its molar mass is 176 g/mol. Determine the empirical and molecular formula for serotonin.

