

_

SCIENTIFIC NOTATION

Put the following measurement into scientific notation.

5732 grams

If moving the decimal makes the number smaller, then the exponent gets arger.

SCIENTIFIC NOTATION

Put the following measurement into scientific notation.

0.0050 m

If moving the decimal makes the number $\boxed{\text{CIGET}}$, then the exponent gets $\underline{\text{smaller}}$.

MULTIPLYING SCIENTIFIC NOTATION

 $(3.0 \times 10^{5} \text{cm}) (2.0 \times 10^{4} \text{cm}) = ?$

DIVIDING SCIENTIFIC NOTATION

$$\frac{(4 \times 10^{-3} \text{ s})}{(1 \times 10^{-5} \text{ s})}$$

5

SCIENTIFIC NOTATION ON YOUR CALCULATOR

Calculate the volume of a container with a length of 3.25 x 10^3 m, width of 8.93 x 10^5 m and height of 2.11 x 10^{-2} m.

UNIT ANALYSIS

In the far away country of Yrtsimehc, the monetary currency is based on "izzles" rather than "dollars". The following relationships are true in this currency:

1 frizzle = 8 crizzles 6 drizzles = 0.5 sizzles 2 crizzles = 10 drizzles

If you have <u>75 frizzles</u> in the bank, <u>how many sizzles</u> is this equivalent to?

7

_

UNIT ANALYSIS

Given that: 2.21 lb = 1.00 kg

1.00 atm = 101.3 kPa

14 lb = 1 stone16 oz = 1 lb

Mr. Wiebe weighs 14.3 stone. How many kilograms is this?

4.54 L = 1.00 gal

1.61 km = 1.00 mile2000 lb = 1 ton

UNIT ANALYSIS

Given that: 2.21 lb = 1.00 kg 4.54 L = 1.00 gal 1.00 atm = 101.3 kPa 1.61 km = 1.00 mile 14 lb = 1 stone 2000 lb = 1 ton

16 oz = 1 lb

A recipe calls for 4 oz of sugar. How many grams of sugar would this be?

11

IONIC COMPOUNDS

Example: Aluminum oxide Example: CaCl₂

Example: Iron(III) chloride Example: Cu₂S

IONIC COMPOUNDS

Example: barium nitrate Example: Zinc <u>hydroxide</u>

Example: NH_4NO_3 Example: $Ca_3(PO_4)_2$

13

COVALENT MOLECULES

Some elements naturally exist in <u>molecule form</u> rather than atom form. They are called <u>diatomic elements</u>

H₂, N₂, F₂, O₂, I₂, CI₂, Br₂

"<u>Have No Fear Of Ice Cold Beer!"</u>

COVALENT COMPOUNDS

Example: P_2O_5 Example: N_2O

Example: carbon monoxide Example: nitrogen triiodide

15

15

MOLAR MASS

Не

 CO_2

lithium nitrate

 $Ni_2(CO_3)_3$

Molar mass is used as a conversion factor between the mass of a chemical and the number of moles of that chemical.

17

EXAMPLE #1

A liter of regular gasoline typically contains about 19 moles of octane molecules (C_3H_8).

How many grams of octane would this be?

How many molecules of octane are present?

EXAMPLE #2

It is recommended that a person eat no more than 6.0 g of table salt (sodium chloride) per day.

How many moles of salt would this be?

How many **molecules** of salt is this?

19

BALANCING CHEMICAL EQUATIONS

$$AI + O_2 \rightarrow Al_2O_3$$

$$_$$
 Na(OH) + $_$ Fe(NO₃)₃ \rightarrow $_$ Na(NO₃) + $_$ Fe(OH)₃

$$\underline{\hspace{1cm}} C_2H_6 + \underline{\hspace{1cm}} O_2 \rightarrow \underline{\hspace{1cm}} CO_2 + \underline{\hspace{1cm}} H_2O$$

BALANCED FORMULA EQUATIONS A piece of iron reacts with oxygen gas to produce rust, Fe₂O₃. Words Formulas Pictures Balanced Equation

21

STOICHIOMETRY

Balanced Equation:

What mass of iron must have been present to produce 25.0 g of rust?

23

STOICHIOMETRY

Percentage Yield = <u>Actual Yield</u> x 100% Theoretical Yield

5.0 g of iron is completely reacted with excess oxygen and forms 6.29 g of rust. What is the % yield of this reaction?

MOLARITY

The number of **moles** of the chemical solute per **litre of solution**.

mol/L = M

For example:

1.8 M HCl means 1.8 moles of HCl per litre of solution.

Molarity = moles of solute
volume of solution in liters

Table 1 Amount Concentrations of Common Stock Acid Solutions

Stock acid	Amount concentration (mol/L)
hydrochloric acid, HCl(aq)	12
nitric acid, HNO ₃ (aq)	16
sulfuric acid, H ₂ SO ₄ (aq)	18

25

CALCULATING MOLARITY

A student makes some iced tea as per the instructions on the container. Calculate the molarity of sugar in the juice. (Assume the sugar in powdered drinks is all sucrose $C_{12}H_{22}O_{11}$

Molarity = moles of solute
volume of solution in liters

Nutrition Facts Valeur nutritive Per 2 tbsp (25 g) / pour 2 c. à soupe (25 g) 1 cup (250 mL) prepared 1 tasse (250 mL) préparée	
Teneur % valeur qu	aily Value otidienne
Calories / Calories 100	
Fat / Lipides 0 g	0%
Saturated / saturés 0 g + Trans / trans 0 g	0 %
Cholesterol / Cholestérol 0 mg	
Sodium / Sodium 0 mg	0 %
Potassium / Potassium 15 mg	1 %
Carbohydrate / Glucides 25 g	8 %
Fibre / Fibres 0 g	0 %
Sugars / Sucres 24 g	
Protein / Protéines 0 g	

WORKING WITH MOLARITY

Household chlorine bleach is a 0.067 M solution of sodium hypochlorite. What mass of NaClO solute is required to prepare 225 mL of bleach solution?

27

DILUTION

Concentrated solutions have a relatively **high** molarity.

Dilute solutions have a relatively **low** molarity.

It is often **faster** to prepare a standard solutions by **diluting** a more concentrated solution.

The following **equation** can be used to solve **dilution problems** – when **water** is **added** or **removed** from a solution.

$$M_1V_1 = M_2V_2$$

 M_1 = the initial molarity M_2 = the final molarity

 V_1 = the initial volume V_2 = the final volume

DILUTION

A student measures 100.0 mL of a 5.0 M potassium chloride solution and adds enough water to it to make the volume 2.0 L. What will be the molarity of this new solution?

29

DILUTION

How much water would you need to add to 200.0 mL of a 1.50 M sodium nitrate solution to dilute it down to 0.250 M?

DILUTION

If you were to mix 200.0 mL of a 0.750 M NaCl solution with 300.0 mL of a 0.250 M NaCl solution, what would the final molarity of the solution be?