REVIEW OF CH3O

CH4OS

MR. WIEBE

1

SCIENTIFIC NOTATION

Put the following measurement into scientific notation.

5732 grams

If moving the decimal makes the number smaller, then the exponent gets dradr.

SCIENTIFIC NOTATION

Put the following measurement into scientific notation.

0.0050 m

If moving the decimal makes the number Ares then the exponent gets smaller.

3

MULTIPLYING SCIENTIFIC NOTATION $\left(3.0 \times 10^{5} \mathrm{~cm}\right)\left(2.0 \times 10^{4} \mathrm{~cm}\right)=?$

DIVIDING SCIENTIFIC NOTATION

$$
\frac{\left(4 \times 10^{-3} s\right)}{\left(1 \times 10^{-5} s\right)}
$$

SCIENTIFIC NOTATION ON YOUR CALCULATOR

Calculate the volume of a container with a length of 3.25 x $10^{3} \mathrm{~m}$, width of $8.93 \times 10^{5} \mathrm{~m}$ and height of $2.11 \times 10^{-2} \mathrm{~m}$.

UNIT ANALYSIS

In the far away country of Yrtsimehc, the monetary currency is based on "izzles" rather than "dollars". The following relationships are true in this currency:

$$
1 \text { frizzle }=8 \text { crizzles } 6 \text { drizzles }=0.5 \text { sizzles } 2 \text { crizzles }=10 \text { drizzles }
$$

If you have 75 frizzles in the bank, how many sizzles is this equivalent to?

Very big

Gigantic Megaphones Killed 1 Million Microscopic Nanobots

Kinda big

King Henry Died Drinking Chocolate Milk

9

UNIT ANALYSIS

Given that:

$$
\begin{aligned}
& 2.21 \mathrm{lb}=1.00 \mathrm{~kg} \\
& 1.00 \mathrm{~atm}=101.3 \mathrm{kPa} \\
& 14 \mathrm{lb}=1 \text { stone } \\
& 16 \mathrm{oz}=1 \mathrm{lb}
\end{aligned}
$$

Mr. Wiebe weighs 14.3 stone. How many kilograms is this?

UNIT ANALYSIS

Given that:

$$
\begin{aligned}
& 2.21 \mathrm{lb}=1.00 \mathrm{~kg} \\
& 1.00 \mathrm{~atm}=101.3 \mathrm{kPa} \\
& 14 \mathrm{lb}=1 \text { stone } \\
& 16 \mathrm{oz}=1 \mathrm{lb}
\end{aligned}
$$

$4.54 \mathrm{~L}=1.00 \mathrm{gal}$
$1.61 \mathrm{~km}=1.00$ mile
$2000 \mathrm{lb}=1$ ton

A recipe calls for 4 oz of sugar. How many grams of sugar would this be?

IONIC COMPOUNDS

Example: Aluminum oxide

Example: CaCl_{2}

Example: Iron(III) chloride
Example: $\mathrm{Cu}_{2} \mathrm{~S}$

IONIC COMPOUNDS

Example: barium nitrate
Example: Zinc hydroxide

Example: $\mathrm{NH}_{4} \mathrm{NO}_{3}$
Example: $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

COVALENT MOLECULES

Some elements naturally exist in molecule form rather than atom form. They are called diatomic elements

$\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{O}_{2}, \mathrm{I}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}$ "Have No Fear Of Ice Cold Beer!"

COVALENT COMPOUNDS

Example: $\mathrm{P}_{2} \mathrm{O}_{5}$

Example: carbon monoxide
Example: nitrogen triiodide

THE MOLE

MOLAR MASS He

lithium nitrate
$\mathrm{Ni}_{2}\left(\mathrm{CO}_{3}\right)_{3}$

Molar mass is used as a conversion factor between the mass of a chemical and the number of moles of that chemical.

17

EXAMPLE \# 1

A liter of regular gasoline typically contains about 19 moles of octane molecules $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$.

How many grams of octane would this be?

How many molecules of octane are present?

EXAMPLE \#2

It is recommended that a person eat no more than 6.0 g of table salt (sodium chloride) per day.

How many moles of salt would this be?

How many molecules of salt is this?

BALANCING CHEMICAL EQUATIONS

$\ldots \mathrm{Al}+\quad \mathrm{O}_{2} \rightarrow \quad$ - $\mathrm{Al}_{2} \mathrm{O}_{3}$
\qquad $\mathrm{Na}(\mathrm{OH})+$ \qquad $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow$ \qquad $\mathrm{Na}\left(\mathrm{NO}_{3}\right)+$ \qquad $\mathrm{Fe}(\mathrm{OH})_{3}$
$]_{2} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{Z}_{2} \mathrm{O}_{2} \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$

BALANCED FORMULA EQUATIONS

A piece of iron reacts with oxygen gas to produce rust, $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

Words			
Formulas			
Pictures			
Balanced Equation			

STOICHIOMETRY

Balanced Equation:

What mass of iron must have been present to produce $\underline{25.0}$ g of rust?

STOICHIOMETRY

Percentage Yield $=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times 100 \%$
5.0 g of iron is completely reacted with excess oxygen and forms 6.29 g of rust. What is the \% yield of this reaction?

MOLARITY

The number of moles of the chemical solute per litre of solution.
$\mathrm{mol} / \mathrm{L}=\mathrm{M}$

For example:

1.8 M HCl means 1.8 moles of HCl per litre of solution.

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { volume of solution in liters }}
$$

Table 1 Amount Concentrations of Common Stock Acid Solutions

Stock acid	Amount concentration (mol/L)
hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$	12
nitric acid, $\mathrm{HNO}_{3}(\mathrm{aq})$	16
sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	18

CALCULATING MOLARITY

A student makes some iced tea as per the instructions on the container. Calculate the molarity of sugar in the juice. (Assume the sugar in powdered drinks is all sucrose $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { volume of solution in liters }}
$$

Nutrition Facts Valeur nutritive Per 2 tbsp $(25 \mathrm{~g}) /$ pour 2 c . à soupe $(25 \mathrm{~g})$ 1 cup (250 mL) prepared 1 tasse (250 mL) préparée	
	$\begin{aligned} & \text { \% Daily Value } \\ & \text { \% valeur quotidienne } \end{aligned}$
Calories / Calories 100	
Fat / Lipides 0 g	0\%
Saturated / saturés 0 g + Trans / trans 0 g	0 g
Cholesterol / Cholestérol 0 mg	
Sodium / Sodium 0 mg	$\mathrm{gg} \mathrm{0} \mathrm{\%}$
Potassium / Potassium 15 mg	m 15 mg
Carbohydrate / Glucides 25 g	des 25 g
Fibre / Fibres 0 g	0\%
Sugars / Sucres 24 g	
Protein / Protéines 0 g	

WORKING WITH MOLARITY

Household chlorine bleach is a 0.067 M solution of sodium hypochlorite. What mass of NaClO solute is required to prepare 225 mL of bleach solution?

DILUTION

Concentrated solutions have a relatively high molarity.
Dilute solutions have a relatively low molarity.
It is often faster to prepare a standard solutions by diluting a more concentrated solution.

The following equation can be used to solve dilution
 problems - when water is added or removed from a solution.

$$
M_{1} V_{1}=M_{2} V_{2}
$$

$M_{1}=$ the initial molarity
$M_{2}=$ the final molarity
$\mathbf{V}_{1}=$ the initial volume $\quad \mathbf{V}_{\mathbf{2}}=$ the final volume

DILUTION

A student measures 100.0 mL of a 5.0 M potassium chloride solution and adds enough water to it to make the volume 2.0 L . What will be the molarity of this new solution?

DILUTION

How much water would you need to add to 200.0 mL of a 1.50 M sodium nitrate solution to dilute it down to 0.250 M ?

DILUTION

If you were to mix 200.0 mL of a 0.750 M NaCl solution with 300.0 mL of a 0.250 M NaCl solution, what would the final molarity of the solution be?

