

THE WAVE NATURE OF LIGHT

Light travels through space as a <u>wave.</u>

It travels at a constant speed equal to 3.00 x 10⁸ m/s or 300 million m/s.

Slide 7

	BUT ONLY RELATIVELY.
	EARTH, MOON AND MARS — All distances to scale; bodies x20 larger —
	EARTH Earth-Mars oneway = 3min 2sec
	Closest approach 54.6 Million km
	James O'Donoghue / NASA imagery — T: @physicsJ IG: jameslikesspace
9	

INFRARED SPECTROSCOPY

SA and ESA

NASA's Hubble Space Telescope has cameras that can capture different wavelengths of light, resulting in images that show different perspectives of the same object.

M16 ■ Eagle Nebula Hubble Space Telescope ■ WFC3/UVIS/IR

STScI-PRC15-01

13

THERMAL IMAGING

Thermal (infrared) imaging is very useful. It can be used to detect abnormal heat signatures in electrical circuits as well as in animals.

CONVERTING BETWEEN WAVELENGTH & FREQUENCY $\begin{aligned}
\mathcal{L} = \lambda \mathcal{L} \\
\lambda &= \text{wavelength in meters} \\
\Psi &= \text{frequency} \left(\frac{1}{s} \text{ becomes s}^{-1} \text{ or Hz}\right) \\
C &= \text{speed of light} \left(3.00 \times 10^8 \text{ m/s}\right)
\end{aligned}$

		5.	
	Multiplication Factor	Prefix	Symbol
	1,000,000,000 = 10 9	giga	G
	$1,000,000 = 10^{6}$	mega	M
	$1,000 = 10^{3}$	kilo	k
	$100 = 10^{2}$	hecto	h
	1 = 1		
	$0.01 = 10^{-2}$	centi	C
	$0.001 = 10^{-3}$	milli	m
	0.000001 = 10-6	micro	μ
	$0.0000001 = 10^{-9}$	nano	n

