2. EQUILIBRIUM CONSTANTS

UNIT 3 - CHEMICAL EQUILIBRIUM

CH4OS MR. WIEBE

1

EQUILIBRIUM LAW

equilibrium law the mathematical description of a chemical system at equilibrium
equilibrium constant (\boldsymbol{K}) a constant numerical value defining the equilibrium law for a given system; units are not included when giving the value of K

Figure 1 Cato Maximilian Guldberg (1836-1902) and Peter Waage (1833-1900) first proposed the equilibrium law in 1864.

QUANTIFYING EQUILIBRIUM - K

An equilibrium system, at any given temperature, can be described by an equilibrium expression and its resulting equilibrium constant.

$$
\begin{aligned}
& \mathrm{aA}+\frac{\mathrm{bB}}{+} \mathrm{cC}+\frac{\mathrm{dD}}{} \\
& \mathrm{~K}=\frac{\text { Products }}{\text { Reactants }} \mathrm{K}=\frac{[C]^{c}[D]^{d}}{[\mathrm{~A}]^{\mathrm{a}}[\mathrm{~B}]^{\mathrm{b}}}
\end{aligned}
$$

Equilibrium Constant $=$ a number
Equilibrium Expression = equation

ONLY (aq) and (g) are included! (I) and (s) are NOT!

USING THE EQUILIBRIUM EXPRESSION $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrows \mathbf{2 H I}(\mathrm{g}) @ 25^{\circ} \mathrm{C}$

Initial concentration ($\mathrm{mol} / \mathrm{L}$)		
$\left[\mathrm{H}_{2}(\mathrm{~g})\right]$	$\left[l_{2}(\mathrm{~g})\right.$]	[$\mathrm{H}(\mathrm{g})$]
2.00	2.00	0
Equilibrium concentration ($\mathrm{mol} / \mathrm{L}$)		
$\left[\mathrm{H}_{2}(\mathrm{~g})\right]$	$\left[l_{2}(\mathrm{~g}]\right)$	[H / g) $]$
0.442	0.442	3.119

$K=\frac{[\mathrm{HI}(\mathrm{g})]^{2}}{\left[\mathrm{H}_{2}(\mathrm{~g})\right]\left[\mathrm{I}_{2}(\mathrm{~g})\right]}$
$K=\frac{(3.119)^{2}}{(0.442)(0.442)}$
$K=49.8$

THE SIZE OF K HAS MEANING

Big K = [Reactants] < [Products] @ Eq'm

Eq'm is PRODUCT FAVOURED

THE SIZE OF K HAS MEANING

```
Small K = [Reactants] > [Products] @ Eq'm
```

K

Eq'm is REACTANT FAVOURED

THE SIZE OF K HAS MEANING

K = 1 ... [Products] = [Reactants] @ Eq'm

7

EXAMPLE 1
Write the equilibrium expression for the following reaction:

$$
4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

EXAMPLE 2

The following reaction happens in a closed container at a constant temperature. At equilibrium, the concentrations of each chemical are $1.50 \times 10^{-5} \mathrm{~mol} / \mathrm{L} \mathrm{N} 2(\mathrm{~g}), 3.45 \times 10^{-1} \mathrm{~mol} / \mathrm{L}$ $\mathrm{H}_{2}(\mathrm{~g})$, and $2.00 \times 10^{-4} \mathrm{~mol} / \mathrm{L} \mathrm{NH}_{3}(\mathrm{~g})$. Calculate the equilibrium constant.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

PUTTING IT ALL TOGETHER...

When 0.800 moles of SO_{2} and 0.800 moles of O_{2} are placed in a 2.00 L container and allowed to reach equilibrium, the equilibrium $\left[\mathrm{SO}_{3}\right]$ is found to be $0.300 \mathrm{~mol} / \mathrm{L}$. Calculate the K value for this reaction at this temperature.

$$
2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

