2. EQUILIBRIUM CONSTANTS

UNIT 3 – CHEMICAL EQUILIBRIUM

CH40S MR. WIEBE

EQUILIBRIUM LAW

equilibrium law the mathematical description of a chemical system at equilibrium

equilibrium constant (*K*) a constant numerical value defining the equilibrium law for a given system; units are not included when giving the value of *K*

Figure 1 Cato Maximilian Guldberg (1836–1902) and Peter Waage (1833–1900) first proposed the equilibrium law in 1864.

1

PUTTING IT ALL TOGETHER...

When 0.800 moles of SO₂ and 0.800 moles of O₂ are placed in a 2.00 L container and allowed to reach equilibrium, the equilibrium [SO₃] is found to be 0.300 mol/L. Calculate the K value for this reaction at this temperature.

$$2 \text{SO}_{2 \text{ (g)}} + \text{O}_{2 \text{ (g)}} \Rightarrow 2 \text{SO}_{3 \text{ (g)}}$$

10