3. LE CHATELIER'S PRINCIPLE – CONCENTRATION & TEMPERATURE

UNIT 3 - CHEMICAL EQUILIBRIUM

CH40S MR. WIEBE

EQUILIBRIUM POSITION CAN BE INFLUENCED

Le Châtelier's Principle

When a chemical system at equilibrium is disturbed by a change in a property, the system adjusts in a way that opposes the change.

2

TRANSLATION:

- •When you take something away from a system at equilibrium, the system shifts in such a way as to replace some of what you've taken away.
- •When you add something to a system at equilibrium, the system shifts in such a way as to use up some of what you've added.

CHANGES IN CONCENTRATION

Adding more of a **reactant** or **product** shifts the reaction in the direction that uses them up.

$$2CO_2(g) \Rightarrow 2CO(g) + O_2(g)$$

stress- reaction-

_

CHANGES IN CONCENTRATION

Adding more of a **reactant** or **product** shifts the reaction in the direction that uses them.

$$2CO_2(g) \Rightarrow 2CO(g) + O_2(g)$$

stress- reaction-

Time

CHANGES IN CONCENTRATION

Removing a **reactant** or **product** from the equilibrium shifts the reaction in a direction that replaces them.

$$2CO_2(g) \Rightarrow 2CO(g) + O_2(g)$$

stress- reaction-

CHANGES IN CONCENTRATION

Removing a **reactant** or **product** from the equilibrium shifts the reaction in a direction that replaces them.

$$2CO_2(g) \Rightarrow 2CO(g) + O_2(g)$$

stress- reaction-

CHANGES IN TEMPERATURE

Increasing the **temperature** of a reaction causes equilibrium to shift in the direction that **decreases** the added energy.

$$2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g) + Energy$$

stress- reaction-

CHANGES IN TEMPERATURE

Decreasing the **temperature** of a reaction causes equilibrium to shift in the direction that replaces the lost energy by **increasing** it.

$$2SO_2(g) + O_2(g) \leftrightarrow 2SO_3(g) + Energy$$

stress- reaction-

12

CHANGES IN TEMPERATURE

Increasing the **temperature** of a reaction causes equilibrium to shift in the direction that **decreases** the added energy.

$$2CO_2(g) + Energy \Rightarrow 2CO(g) + O_2(g)$$

stress-

reaction-

CHANGES IN TEMPERATURE

Decreasing the **temperature** of a reaction causes equilibrium to shift in the direction that replaces the lost energy by **increasing** it.

$$2CO_2(g) + Energy \Rightarrow 2CO(g) + O_2(g)$$

stress- reaction-

1/1

SEE FOR YOURSELF!

$$CoCl_4^{2-}(aq) + 6H_2O(I) \leftrightarrow Co(H_2O)_6^{2+}(aq) + 4Cl^-(aq) + Energy$$
BLUE

PINK

- Heat it up...
- Cool it down...

Other Stuff...

- 1. Adding an **inert** (non-reactive) gas does **not shift** the equilibrium.
- Only changes to (aq) and (g) reactants or products cause the equilibrium to shift, (s) and (l) do not!

16

Other Stuff...

3. Adding a catalyst does not shift the equilibrium

EXAMPLE 1

$$PCl_3(g) + Cl_2(g) \leftrightarrow PCl_5(g) + ENERGY$$

Stress	[PCl ₃]	[Cl ₂]	[PCl ₅](g)	Shifts	Creates More
[Cl ₂] is Increased					
[PCI ₅] is increased					
[PCI ₃] is decreased					
Temp is increased					