3. LE CHATELIER'S PRINCIPLE CONCENTRATION \& TEMPERATURE

UNIT 3 - CHEMICAL EQUILIBRIUM

CH4OS MR. WIEBE

EQUILIBRIUM POSITION CAN BE INFLUENCED

Le Châtelier's Principle

When a chemical system at equilibrium is disturbed by a change in a property, the system adjusts in a way that opposes the change.

TRANSLATION:

- When you take something away from a system at equilibrium, the system shifts in such a way as to replace some of what you've taken away.
-When you add something to a system at equilibrium, the system shifts in such a way as to use up some of what you've added.

CHANGES IN CONCENTRATION

Adding more of a reactant or product shifts the reaction in the direction that uses them up.

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

CHANGES IN CONCENTRATION

Adding more of a reactant or product shifts the reaction in the direction that uses them.

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

stress-
reaction-

WHY?

Time

CHANGES IN CONCENTRATION

Removing a reactant or product from the equilibrium shifts the reaction in a direction that replaces them.

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

stress-
reaction-

CHANGES IN CONCENTRATION

Removing a reactant or product from the equilibrium shifts the reaction in a direction that replaces them.

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

WHY?

Time

CHANGES IN TEMPERATURE

Increasing the temperature of a reaction causes equilibrium to shift in the direction that decreases the added energy.

$$
\mathbf{2 S O}(\mathbf{g})+\mathbf{O}_{\mathbf{2}}(\mathrm{g}) \leftrightarrow \mathbf{2} \mathrm{SO}_{\mathbf{3}}(\mathrm{g})+\text { Energy }
$$

CHANGES IN TEMPERATURE

Decreasing the temperature of a reaction causes equilibrium to shift in the direction that replaces the lost energy by increasing it.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})+\text { Energy }
$$

CHANGES IN TEMPERATURE

Increasing the temperature of a reaction causes equilibrium to shift in the direction that decreases the added energy.

$$
2 \mathrm{CO}_{2}(\mathrm{~g})+\text { Energy } \rightleftharpoons 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

CHANGES IN TEMPERATURE

Decreasing the temperature of a reaction causes equilibrium to shift in the direction that replaces the lost energy by increasing it.

$$
2 \mathrm{CO}_{2}(\mathrm{~g})+\text { Energy } \rightleftharpoons \mathbf{2 C O}(\mathrm{g})+\mathrm{O}_{\mathbf{2}}(\mathrm{g})
$$

stress-

reaction-

SEE FOR YOURSELF!

$\mathrm{CoCl}_{4}{ }^{2 \cdot}(\mathrm{aq})$
BLUE

\mathrm{PINK}\end{array}}{\mathrm{PIN}}+4 \mathrm{Cl} \cdot(\mathrm{aq})+\) Energy

- Heat it up...
- Cool it down...

Other Stuff...

1. Adding an inert (non-reactive) gas does not shift the equilibrium.
2. Only changes to (aq) and (g) reactants or products cause the equilibrium to shift, (s) and (I) do not!

Other Stuff...

3. Adding a catalyst does not shift the equilibrium

EXAMPLE 1

$$
\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{5}(\mathrm{~g})+\mathrm{ENERGY}
$$

Stress	$\left[\mathrm{PCl}_{3}\right]$	$\left[\mathrm{Cl}_{2}\right]$	$\left[\mathrm{PCl}_{5}\right](\mathrm{g})$	Shifts	Creates More
$\left[\mathrm{Cl}_{2}\right]$ Increased					
$\left[\mathrm{PCl}_{5}\right]$ is increased					
$\left[\mathrm{PCl}_{3}\right]$ is decreased					
Temp is increased					

18

