2. STRONG VS. WEAK ACIDS \& BASES

CH4OS UNIT 4 - ACID BASE EQUILIBRIUM

1

STRONG VS. WEAK

Strong acid
HA molecules completely dissociate

Weak acid HA molecules partially dissociate

STRONG ACIDS

A strong acid is a forceful H^{+}donor. It must give an H^{+} to someone! Once a strong acid donates H^{+}, the H^{+} will never come back.

- Acid chart top six
- Not equilibrium...stoichiometric relationships...No ICE table! - Use a " \rightarrow " and not " \rightleftarrows "
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ 1.0M

RELATIVE ACID STRENGTH

Concentration before Equilibrium concentrations

5

WEAK ACIDS

A weak acid is a wishy-washy H^{+}donor. It can give away its H^{+}, but may regain the H^{+}a few seconds later. Every acid that is not a strong acid is a weak acid.

- Produce small amounts of $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$.
- Equilibriums...equilibrium constants ($K_{a}{ }^{\prime}$ s)...need ICE tables .
- Use a " \rightleftarrows " and not " \rightarrow "
$\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
1.0M

RELATIVE ACID STRENGTH

7

DON'T FORGET LAST LESSON!

- In order to have a reaction, both an acid (H^{+}donor) and a base (H^{+}acceptor) are required!
- The reaction itself is an \mathbf{H}^{+}transfer (sometimes called a proton transfer) from the acid to the base (like tossing a football from quarterback to receiver).
- Many acid-base reactions are reversible, so the H^{+}(the "football") may be passed back and forth.

SOME COMMON WEAK ACIDS

Acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5}$
Nitrous acid, HNO_{2}
$\mathrm{K}_{\mathrm{a}}=4.5 \times 10^{-4}$

Write the Bronsted Lowry equation for each acid in water and identify the acids and bases.

Write the Ka expression for each acid. Which acid is stronger? Why?

STRONG BASES REVISED

A strong base is a forceful H^{+}grabber. If an acidic hydrogen is anywhere to be found, the strong base will take it and keep it! There is only 1 strong base that you will see in this class:

- Produce large amounts of OH^{-}.
- Not equilibrium...stoichiometric relationships...no ICE tables - Use a " \rightarrow " and not " $\rightleftarrows "$
$\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
1.0 M

STRONG BASES

Soluble Hydroxides LiOH
NaOH
KOH
$\mathrm{Sr}(\mathrm{OH})_{2}$
$\mathrm{Ba}(\mathrm{OH})_{2}$

WEAK BASES REVISED

A weak base is a wishy-washy H^{+}acceptor. It can take an H^{+}, but may relinquish the H^{+}a few seconds later. Every base that is NOT hydroxide is a weak base.

- Produce small amounts of OH^{-}.
- Equilibriums...equilibrium constants (K_{b}^{\prime} s)...need ICE tables. - Use a " \rightleftarrows " and not " \rightarrow "
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ 1.0M

SOME COMMON WEAK BASES

Bicarbonate ion, HCO_{3}^{-}
Ammonia, NH_{3}
$K_{b}=2.3 \times 10^{-8}$
$K_{b}=1.8 \times 10^{-5}$

Write the Bronsted Lowry equations for each base in water and identify the acids and bases.

Write the K_{b} expression for each acid. Which base is stronger? Why?

