

CH30S UNIT 3 – SOLUTIONS WIEBE

1

REMEMBER...

- •The <u>concentration of a saturated solution</u> of a salt is called the <u>solubility</u> of that solute. Every salt has its own unique solubility at a given temperature.
- •The <u>concentration of an unsaturated solution varies</u> depending on the amount of solute and solvent present.

Concentration = <u>quantity of solute</u> quantity of solution

Quantities can be:

- Mass (grams)
- Volume (millilitres)
- Moles (mol)

WHY IS CONCENTRATION IMPORTANT?

- Prescription drugs in the correct <u>concentration</u> make you better.
- In <u>higher concentration</u> they can kill you.
- •In lower concentration, they aren't effective, and you could get sicker.

3

OTHER AREAS WHERE CONCENTRATION IS IMPORTANT...

- Pesticide/fertilizer use
- Food additives
- Blood alcohol content.
- Consumer products

Δ

CONCENTRATION IN CONSUMER PRODUCTS

1. Percent Concentration

$$\% \frac{V}{V} = \frac{volume\ solute}{volume\ solution} \times 100$$

$$\% \frac{W}{V} = \frac{mass\ solute}{volume\ solution} \times 100$$

$$\% \frac{W}{W} = \frac{mass\ solute}{mass\ solution} \times 100$$

v = volume (mL) m = mass (g)

IF THE UNITS FOR BOTH ARE THE SAME, DON'T CONVERT!

5

CONCENTRATION IN CONSUMER PRODUCTS

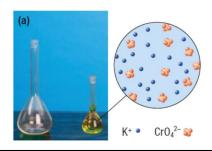
2. Parts Per Million/Billion

$$ppm = \frac{quantity \ solute}{quantity \ solution} \times 10^6$$

$$ppb = \frac{quantity \, solute}{quantity \, solution} \times 10^9$$

Table 1 Parts Per Million, Billion, Trillion

Part per	Equivalent to	
1 ppm	1 drop in a bathtub full of water 30 s out of a year	
1 ppb	1 drop in 250 full barrels 3 s out of a century	
1 ppt	1 drop in 20 Olympic- sized pools 3 s out of 100 000 years	


v = volume (mL) m = mass (g)

IF THE UNITS FOR BOTH ARE THE SAME, DON'T CONVERT!

EXAMPLE #1 – DETERMINING CONCENTRATION FROM MEASURED VALUES

0.35 g of solid potassium chromate is dissolved in enough water to make 0.50 L of solution. What is <u>concentration</u> of the solution expressed in:

1. percent concentration 2. ppm

7

EXAMPLE #2 – DETERMINING CONCENTRATION FROM MEASURED VALUES

A cleaning solution is created by adding 100.0 mL of Pine Sol to 4.0 L of water. What is <u>% concentration</u> of the solution?

WHICH MILK IS WHICH?

Nutrition Facts

Serving Size 1 Container (150g)

Fat 15
Value*
2%
5%
4%
16%
2%
0%
38%
C 0%
1
calorie diet.

DETERMINE THE %
CONCENTRATION OF FAT IN
EACH OF THE MILK LABELS.

Teneur	% Da waleur quo %	ily Value tidienne
Calories / Calor	ries 160	
Fat / Lipides 8	g	13 %
Saturated / sa + Trans / tran	26 %	
Cholesterol / Cl	holestérol 30 mg	ĺ
Sodium / Sodiu	ım 110 mg	5 %
Carbohydrate /	Glucides 12 g	4 %
Fibre / Fibres	0 g	0 %
Sugars / Suci	res 11 g	
Protein / Protéi	nes 9 g	
Vitamin A / Vitar	nine A	10 %
Vitamin C / Vitar		0 %
Calcium / Calciu	ım	30 %
Iron / Fer		0 %

a

WORKING WITH % CONCENTRATIONS

The concentration of ethanol (alcohol) in a 750 mL bottle of wine is 13.5% V/V. If wine has the same density as water, calculate the volume of ethanol in the bottle.

LEARNING TIP

Working with Percentages

To determine the percentage of a number, remember that the word "of" means "multiplied by." Simply multiply the number by the percentage written as a decimal. For example,

13.5 % of 750 = (0.135)(750) = 101

WORKING WITH % CONCENTRATIONS

Glucose ($C_6H_{12}O_6$) is used to prepare intravenous feeding solutions. What volume of 5.0% W/V glucose solution can be prepared using 125 g of glucose?

11

WORKING WITH PPM/PPB CONCENTRATIONS

Swimming pool manufacturers recommend maintaining the chlorine concentration of a pool at 3.0 ppm. What mass of chlorine powder must be added to a pool containing 3.4 x 10⁶ L of water to achieve this concentration?

LEARNING TIP

Percentages and Exponents

"ppm" is similar to the symbol "%" in the equations involving percentage concentration. You could think of the

" \times 100" in the above equations as " \times 10²." You could even think of "%" as "pph"—parts per hundred!

WORKING WITH PPM/PPB CONCENTRATIONS

Health Canada guidelines state that the maximum concentration of mercury that is acceptable in drinking water is 1 ppb. What volume of water would be required to have 5.0 g of Hg dissolved in it and still be acceptable?

LEARNING TIP

Percentages and Exponents

"ppm" is similar to the symbol "%" in the equations involving percentage concentration. You could think of the

" \times 100" in the above equations as

 $\ensuremath{^{\prime\prime}}\times10^2.\ensuremath{^{\prime\prime}}$ You could even think of $\ensuremath{^{\prime\prime}}\%$

as "pph"—parts per hundred!

13

SUMMARY

Table 2 Measure of Concentration

Name	Abbreviation	Equation	Application
percentage volume/volume	% V/V	$c_{\text{v/v}} = \frac{v_{\text{solute}}}{v_{\text{solution}}} \times 100 \%$	liquid-liquid mixtures
percentage weight/volume	% W/V	$c_{\text{W/V}} = \frac{m_{\text{solute}}}{v_{\text{solution}}} \times 100 \%$	solid-liquid mixtures
percentage weight/weight	% W/W	$c_{\text{W/W}} = \frac{m_{\text{solute}}}{m_{\text{solution}}} \times 100 \%$	solid-liquid or solid-solid mixtures
parts per million	ppm	$c_{\rm ppm} = \frac{m_{\rm solute}}{m_{\rm solution}} \times 10^6 \rm ppm$	to express small concentrations (e.g., composition of air)
parts per billion	ppb	$c_{\rm ppb} = \frac{m_{\rm solute}}{m_{\rm solution}} \times 10^9 \rm ppb$	to express very small concentrations (e.g., metal contaminants in water)
parts per trillion	ppt	$c_{ m ppt} = rac{m_{ m solute}}{m_{ m solution}} imes 10^{12} m ppt$	to express extremely small concentrations (e.g., traces of medications in water)