3. CONCENTRATION - CONSUMER PRODUCTS

CH3OS UNIT 3-SOLUTIONS WIEBE

1

REMEMBER...

-The concentration of a saturated solution of a salt is called the solubility of that solute. Every salt has its own unique solubility at a given temperature.
-The concentration of an unsaturated solution varies depending on the amount of solute and solvent present.

Concentration $=$ quantity of solute quantity of solution
Quantities can be:

- Mass (grams)
- Volume (millilitres)
- Moles (mol)

WHY IS CONCENTRATION IMPORTANT?

-Prescription drugs in the correct concentration make you better.
-In higher concentration they can kill you.

- In lower concentration,
 they aren't effective, and you could get sicker.

OTHER AREAS WHERE CONCENTRATION IS IMPORTANT...

-Pesticide/fertilizer use
-Food additives
-Blood alcohol content.

- Consumer products

CONCENTRATION IN CONSUMER PRODUCTS

1. Percent Concentration
$v=$ volume $(m L) \quad m=\operatorname{mass}(g)$
$\% \frac{V}{V}=\frac{\text { volume solute }}{\text { volume solution }} \times 100$

IF THE UNITS FOR BOTH ARE THE SAME, DON'T CONVERT!

5

CONCENTRATION IN CONSUMER PRODUCTS

Table 1 Parts Per Million, Billion, Trillion

Part per	Equivalent to
1 ppm	1 drop in a bathtub full of water 30 s out of a year
1 ppb	1 drop in 250 full barrels 3 s out of a century
1 ppt	1 drop in 20 Olympic- sized pools 3 s out of 100000 years

$$
v=\text { volume }(m L) \quad m=\operatorname{mass}(g)
$$

2. Parts Per Million/Billion

$$
\begin{aligned}
& \text { ppm }=\frac{\text { quantity solute }}{\text { quantity solution }} \times 10^{6} \\
& p p b=\frac{\text { quantity solute }}{\text { quantity solution }} \times 10^{9}
\end{aligned}
$$

EXAMPLE \# 1 - DETERMINING CONCENTRATION FROM MEASURED VALUES

0.35 g of solid potassium chromate is dissolved in enough water to make 0.50 L of solution. What is concentration of the solution expressed in:

1. percent concentration
2. ppm

7

EXAMPLE \#2 - DETERMINING CONCENTRATION FROM MEASURED VALUES
A cleaning solution is created by adding 100.0 mL of Pine Sol to 4.0 L of water. What is \% concentration of the solution?

WHICH MILK IS WHICH?

Nutrition Facts	
Serving Size 1 Container (150g)	
Amount Per Serving	
Calories 110 Cals from	Cals from Fat 15
	\% Daily Value*
Total Fat 1.5 g	2\%
Saturated Fat 1g	at 1 g 5\%
Trans Fat 0 g	
Cholesterol 15mg	5mg 4\%
Sodium 380mg	- 16%
Total Carbohydrate 5 g	drate $5 \mathrm{~g} \quad 2 \%$
Dietary Fiber 0 g	0g 0\%
Sugars 4g	
Protein 19g	38\%
Vitamin A 2\% - Vitamin C 0\%	
Calcium 15\% - Iron 0\%	

DETERMINE THE \% CONCENTRATION OF FAT IN EACH OF THE MILK LABELS.

Nutrition Facts	
Valeur nutritive	
Per 1 cup (250 mL) / par 1 tasse (250 mL)	
Amount \% Da Teneur \% valeur quo	\% Daily Value \% valeur quotidienne
Calories / Calories 160	
Fat / Lipides 8 g	13 \%
Saturated / saturés 5 g + Trans / trans 0.2 g	$\begin{array}{ll} \text { rés } 5 \mathrm{~g} & \mathbf{2 6} \% \\ \hline 0.2 \mathrm{~g} & \\ \hline \end{array}$
Cholesterol / Cholestérol 30 mg	
Sodium / Sodium 110 mg	$110 \mathrm{mg} \quad 5 \%$
Carbohydrate / Glucides 12 g	ucides $12 \mathrm{~g} \quad 4 \%$
Fibre / Fibres 0 g	g 0\%
Sugars / Sucres 11 g	
Protein / Protéines 9 g	
Vitamin A / Vitamine A	A 10%
Vitamin C / Vitamine C	C 0\%
Calcium / Calcium	30 \%
Iron / Fer	0 \%
Vitamin D / Vitamine D	D 45 \%

9

WORKING WITH \% CONCENTRATIONS

The concentration of ethanol (alcohol) in a 750 mL bottle of wine is $13.5 \% \mathrm{~V} / \mathrm{V}$. If wine has the same density as water, calculate the volume of ethanol in the bottle.

WORKING WITH \% CONCENTRATIONS

Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is used to prepare intravenous feeding solutions. What volume of 5.0% W/V glucose solution can be prepared using 125 g of glucose?

11

WORKING WITH PPM/PPB CONCENTRATIONS

Swimming pool manufacturers recommend maintaining the chlorine concentration of a pool at 3.0 ppm. What mass of chlorine powder must be added to a pool containing $3.4 \times 10^{6} \mathrm{~L}$ of water to achieve this concentration?

WORKING WITH PPM/PPB CONCENTRATIONS

Health Canada guidelines state that the maximum concentration of mercury that is acceptable in drinking water is 1 ppb . What volume of water would be required to have 5.0 g of Hg dissolved in it and still be acceptable?

LEARNING TIP

Percentages and Exponents "ppm" is similar to the symbol "\%" in the equations involving percentage concentration. You could think of the " $\times 100$ " in the above equations as " $\times 10^{2}$." You could even think of "\%" as "pph"-parts per hundred!

13

SUMMARY

Table 2 Measure of Concentration

Name	Abbreviation	Equation	Application
percentage volume/volume	$\% \mathrm{VN}$	$c_{\mathrm{vN}}=\frac{V_{\text {solute }}}{V_{\text {solution }}} \times 100 \%$	liquid-liquid mixtures
percentage weight/volume	$\% \mathrm{~W} N$	$c_{\mathrm{W} / \mathrm{v}}=\frac{m_{\text {solute }}}{V_{\text {solution }}} \times 100 \%$	solid-liquid mixtures
percentage weight/weight	$\% \mathrm{~W} / \mathrm{W}$	$c_{\mathrm{W} / \mathrm{w}}=\frac{m_{\text {solute }}}{m_{\text {solution }}} \times 100 \%$	solid-liquid or solid-solid mixtures
parts per million	ppm	$c_{\mathrm{ppm}}=\frac{m_{\text {solute }}}{m_{\text {solution }}} \times 10^{6} \mathrm{ppm}$	to express small concentrations (e.g., composition of air)
parts per billion	ppb	$c_{\mathrm{ppb}}=\frac{m_{\text {solute }}}{m_{\text {solution }}} \times 10^{9} \mathrm{ppb}$	to express very small concentrations (e.g., metal contaminants in water)
parts per trillion	ppt	$c_{\mathrm{ppt}}=\frac{m_{\text {solute }}}{m_{\text {solution }}} \times 10^{12} \mathrm{ppt}$	to express extremely small concentrations (e.g., traces of medications in water)

