# 4. ATOMIC STRUCTURE

CH30S UNIT 1 – ELEMENTS & COMPOUNDS







### WHAT MAKES UP AN ATOM?

Most people already know that the atom is made up of three main parts, the protons and neutrons in the **nucleus** and the electrons somewhere outside of the **nucleus**.

|          | PROTONS | NEUTRONS | ELECTRONS |  |
|----------|---------|----------|-----------|--|
| Symbol   |         |          |           |  |
| CHARGE   |         |          |           |  |
| LOCATION |         |          |           |  |
|          |         |          |           |  |





### ATOMIC NUMBER (Z)

The proton is the particle that determines the identity of the element.

The atomic number of an element is the number of protons found in the nucleus of the atom.

| ATOMIC NUMBER<br>(Z) | NUMBER OF<br>PROTONS | IDENTITY OF ELEMENT |
|----------------------|----------------------|---------------------|
| 23                   |                      |                     |
| 92                   |                      |                     |
|                      |                      | Chlorine            |
|                      |                      | Magnesium           |

## ATOMIC NUMBER (Z)

Atoms (as opposed to ions) are electrically neutral, meaning they have one electron for every proton.

| ELEMENT   | NUMBER OF PROTONS | NUMBER OF ELECTRONS |
|-----------|-------------------|---------------------|
| sodium    |                   |                     |
| potassium |                   |                     |
| sulphur   |                   |                     |
| bromine   |                   |                     |



### EXAMPLE #1

Determine the number of protons, electrons, and neutrons in:

| a) <sup>210</sup> Pb |
|----------------------|
| b) <sup>34</sup> S   |
|                      |

11

#### IONS

Chemical changes involve the gaining or losing of electrons only.

lons are atoms (or groups of atoms) that have gained or lost electrons during a reaction to become electrically charged.











15

#### COMMON MEDICAL ISOTOPES

| <b>Radioactive Isotope</b> | Applications in Medicine                                             |
|----------------------------|----------------------------------------------------------------------|
| Cobalt-60                  | Radiation therapy to prevent cancer                                  |
| Iodine-131                 | Locate brain tumors, monitor cardiac,<br>liver and thyroid activity  |
| Carbon-14                  | Study metabolism changes for patients with diabetes, gout and anemia |
| Carbon-11                  | Tagged onto glucose to monitor organs<br>during a PET scan           |
| Sodium-24                  | Study blood circulation                                              |
| Thallium-201               | Determine damage in heart tissue,<br>detection of tumors             |



#### AVERAGE ATOMIC MASS • The average mass of all the naturally occurring isotopes of that element. • This explains why atomic masses on your periodic table are decimals and not whole numbers, as you might expect. Isotope Symbol **Composition of** % in nature the nucleus 12**C** 98.89% Carbon-6 protons 12 6 neutrons 13**C** Carbon-1.11% 6 protons 13 7 neutrons 14**C** Carbon-6 protons <0.01% 14 8 neutrons

19

#### EXAMPLE # 3

Use the mass spectrometry data below to calculate the average atomic mass of iron.

#### Table 2. Stable Isotopes of Iron

| Isotope          | Mass (amu) | % Abundance |
|------------------|------------|-------------|
| <sup>54</sup> Fe | 53.94      | 5.845       |
| <sup>56</sup> Fe | 55.93      | 91.75       |
| <sup>57</sup> Fe | 56.94      | 2.119       |

#### YOUR TURN

Use the mass spectrometry data below to calculate the average atomic mass of neon.

| Strontium |            |           |  |
|-----------|------------|-----------|--|
| Isotope   | Mass (amu) | Abundance |  |
| Sr-84     | 83.913428  | 0.56%     |  |
| Sr-86     | 85.909273  | 9.86%     |  |
| Sr-87     | 86.908902  | 7.00%     |  |
| Sr-88     | 87.905625  | 82.58%    |  |