## 4. CONCENTRATION - CHEMISTRY LAB WORK

CH30S UNIT 3 – SOLUTIONS WIEBE

1

## UNDERSTANDING CONCENTRATION

- •As the quantity of <u>solute increases</u>, the <u>concentration of the solution increases</u> and vice versa.
- As the quantity of <u>solvent increases</u>, the <u>concentration decreases</u> and vice versa.
- Spilling your solution does not change the concentration (you are losing solute and solvent at the same time!)
- •As the <u>solution evaporates</u>, the <u>concentration of solution increases</u> (only solvent evaporates, not solute)

$$Conc = \frac{solute}{solution}$$

# **MOLARITY**

The number of **moles** of the chemical solute per **litre of solution**.

mol/L = M

#### For example:

1.8 M HCl means 1.8 moles of HCl per litre of solution.

Molarity = moles of solute
volume of solution in liters

**Table 1** Amount Concentrations of Common Stock Acid Solutions

| Stock acid                                            | Amount concentration (mol/L) |
|-------------------------------------------------------|------------------------------|
| hydrochloric acid,<br>HCl(aq)                         | 12                           |
| nitric acid,<br>HNO <sub>3</sub> (aq)                 | 16                           |
| sulfuric acid,<br>H <sub>2</sub> SO <sub>4</sub> (aq) | 18                           |

3

### CALCULATING MOLARITY

A student makes some iced tea as per the instructions on the container. Calculate the molarity of <a href="mailto:sugar">sugar</a> in the juice. (Assume the sugar in powdered drinks is all <a href="mailto:sucrose">sucrose</a>  $C_{12}H_{22}O_{11}$ 

Molarity = moles of solute
volume of solution in liters

|                                                                                               | The same of the same of |
|-----------------------------------------------------------------------------------------------|-------------------------|
| Nutrition Facts<br>Valeur nutritive                                                           |                         |
| Per 2 tbsp (25 g) / pour 2 c. à soupe<br>1 cup (250 mL) prepared<br>1 tasse (250 mL) préparée | (25 g)                  |
| Amount % Da Teneur % valeur que                                                               | aily Value<br>otidienne |
| Calories / Calories 100                                                                       |                         |
| Fat / Lipides 0 g                                                                             | 0%                      |
| Saturated / saturés 0 g<br>+ Trans / trans 0 g                                                | 0 %                     |
| Cholesterol / Cholestérol 0 mg                                                                |                         |
| Sodium / Sodium 0 mg                                                                          | 0 %                     |
| Potassium / Potassium 15 mg                                                                   | 1 %                     |
| Carbohydrate / Glucides 25 g                                                                  | 8 %                     |
| Fibre / Fibres 0 g                                                                            | 0 %                     |
| Sugars / Sucres 24 g                                                                          |                         |
| Protein / Protéines 0 g                                                                       |                         |

#### **WORKING WITH MOLARITY**

Household chlorine bleach is a 0.067 M solution of sodium hypochlorite. What mass of NaClO solute is required to prepare 225 mL of bleach solution?



5

### PREPARING A SOLUTIONS







**Figure 5** (a) To prepare a 250 mL sample of potassium permanganate solution, you will need a volumetric flask, distilled water, a dropper, and the required mass of potassium permanganate, KMnO<sub>4</sub>. (b) First dissolve the solid KMnO<sub>4</sub> in about 100 mL of distilled water. (c) Use a dropper to add distilled water until the bottom of the meniscus lines up with the calibration mark on the flask.

### **SUMMARY**

- The concentration of a solution is the quantity of dissolved solute per unit volume of solution.
- Amount concentration is the amount (in moles) of solute dissolved per litre of solution. The units of amount concentration are mol/L.
- Amount concentration is determined using the equation  $c = \frac{n}{V}$ .
- "Amount concentration" is the preferred IUPAC term for solution concentration (replacing molar concentration and molarity).
- Samples taken from a stock solution are diluted to prepare solutions for use in the laboratory.
- A solution of known concentration is called a standard solution.