## 4. CONCENTRATION - CHEMISTRY LAB WORK

CH3OS UNIT 3 -SOLUTIONS WIEBE

1

## UNDERSTANDING CONCENTRATION

"As the quantity of solute increases, the concentration of the solution increases and vice versa.
"As the quantity of solvent increases, the concentration decreases and vice versa.

$$
\text { Conc }=\frac{\text { solute }}{\text { solution }}
$$

-Spilling your solution does not change the concentration (you are losing solute and solvent at the same time!)
"As the solution evaporates, the concentration of solution increases (only solvent evaporates, not solute)

## MOLARITY

The number of moles of the chemical solute per litre of solution.
$\mathrm{mol} / \mathrm{L}=\mathrm{M}$

## For example:

1.8 M HCl means 1.8 moles of HCl per litre of solution.

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { volume of solution in liters }}
$$

Table 1 Amount Concentrations of Common Stock Acid Solutions

| Stock acid | Amount <br> concentration <br> (mol/L) |
| :--- | :---: |
| hydrochloric acid, <br> $\mathrm{HCl}(\mathrm{aq})$ | 12 |
| nitric acid, <br> $\mathrm{HNO}_{3}(\mathrm{aq})$ | 16 |
| sulfuric acid, <br> $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ | 18 |

3

## CALCULATING MOLARITY

A student makes some iced tea as per the instructions on the container. Calculate the molarity of sugar in the juice. (Assume the sugar in powdered drinks is all sucrose $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { volume of solution in liters }}
$$

| Nutrition Facts Valeur nutritive <br> Per 2 tbsp $(25 \mathrm{~g}) /$ pour 2 c . à soupe $(25 \mathrm{~g})$ 1 cup ( 250 mL ) prepared 1 tasse ( 250 mL ) préparée |  |
| :---: | :---: |
|  | $\begin{array}{r} \text { \% Daily Value } \\ \text { \% valeur quotidienne } \end{array}$ |
| Calories / Calories 100 |  |
| Fat / Lipides 0 g | 0\% |
| Saturated / saturés 0 g <br> + Trans / trans 0 g | 0 g |
| Cholesterol / Cholestérol 0 mg |  |
| Sodium / Sodium 0 mg | $\mathrm{gg} \mathrm{0} \mathrm{\%}$ |
| Potassium / Potassium 15 mg | m 15 mg |
| Carbohydrate / Glucides 25 g | des 25 g |
| Fibre / Fibres 0 g | 0\% |
| Sugars / Sucres 24 g |  |
| Protein / Protéines 0 g |  |

## WORKING WITH MOLARITY

Household chlorine bleach is a 0.067 M solution of sodium hypochlorite. What mass of NaClO solute is required to prepare 225 mL of bleach solution?


5

## PREPARING A SOLUTIONS



Figure 5 (a) To prepare a 250 mL sample of potassium permanganate solution, you will need a volumetric flask, distilled water, a dropper, and the required mass of potassium permanganate, $\mathrm{KMnO}_{4}$. (b) First dissolve the solid $\mathrm{KMnO}_{4}$ in about 100 mL of distilled water. (c) Use a dropper to add distilled water until the bottom of the meniscus lines up with the calibration mark on the flask.

## SUMMARY

- The concentration of a solution is the quantity of dissolved solute per unit volume of solution.
- Amount concentration is the amount (in moles) of solute dissolved per litre of solution. The units of amount concentration are $\mathrm{mol} / \mathrm{L}$.
- Amount concentration is determined using the equation $c=\frac{n}{V}$.
- "Amount concentration" is the preferred IUPAC term for solution concentration (replacing molar concentration and molarity).
- Samples taken from a stock solution are diluted to prepare solutions for use in the laboratory.
- A solution of known concentration is called a standard solution.

