4. pH OF STRONG ACIDS \& BASES

$$
\text { UNIT } 4 \quad \text { CH4OS WIEBE }
$$

DON'T FORGET...

STRONG ACIDS

- Ionize completely in water therefore not equilibriums.
- Use B/L or dissociation equation and stoichiometry

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{ACID}]$

HAVE A PLAN OF ACTION!

FOR EXAMPLE

Nitric acid is used in the production of agricultural fertilizers, explosives such as TNT, and dyes. Determine pH of a 0.25 M solution of HNO_{3}.

STRONG BASES

- Soluble hydroxides \rightarrow dissociate completely in water
- Not equilibriums...use dissociation equations and stoichiometry

HAVE A PLAN OF ACTION!

What type of acid am I
What type of base am I
dealing with?
dealing with?

Use basic
stoichiometry to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] and the 4-corners diagram to determine $\mathrm{pH} / \mathrm{pOH}$

Use an ICE table to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ and the 4 -corners diagram to determine $\mathrm{pH} / \mathrm{pOH}$

Use basic stoichiometry to determine $\left[\mathrm{OH}^{-}\right]$ and the 4-corners diagram to determine p

7

FOR EXAMPLE

Calcium hydroxide is an important component of cement, plasters, and mortars. It is also sometimes used to make your pickles extra crunchy! Calculate the pH of a $0.125 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$ solution.

