

DON'T FORGET...

$$rate_{NO_2(g)} = -\frac{\Delta[NO_2(g)]}{\Delta t}$$

$$rate_{O_2(g)} = + \frac{\Delta[O_2(g)]}{\Delta t}$$

Table 1 Concentrations of Reactant and Products over Time

	Concentration (mol/L)		
Time (±1 s)	NO ₂ (g)	NO(g)	0 ₂ (g)
0	0.0100	0	0
50	0.0079	0.0021	0.0011
100	0.0065	0.0035	0.0018
150	0.0055	0.0045	0.0023
200	0.0048	0.0052	0.0026
250	0.0043	0.0057	0.0029
300	0.0038	0.0062	0.0031

5

FORMAT OF A RATE LAW

Rate = $k[Reactant A]^{x}[Reactant B]^{y}$

Rate = speed of reactants turning into products

[Reactant A/B] = the concentration of Reactant A/B in mol/L.

k = specific rate constant for the reaction (if the rate is fast, k will be large, if the rate is slow, k will be small)

x/y (exponent) the order of the reactant. The order reflects the effect concentration has on rate.

5

SUMMARY ORDER OF **EFFECT ON RATE IF EFFECT ON RATE IF EFFECT ON RATE IF** REACTANT **MOLARITY x2 MOLARITY x3** MOLARITY x4 NO EFFECT NO EFFECT NO EFFECT 0 $(2^0 = 1)$ $(3^0 = 1)$ $(4^0 = 1)$ 1 Rate $\uparrow x 2$ Rate $\uparrow x 3$ Rate $\uparrow x 4$ $(2^1 = 2)$ $(4^1 = 4)$ $(3^1 = 3)$ Rate ↑ x 4 Rate $\uparrow x 9$ Rate $\uparrow x 16$ 2 $(2^2 = 4)$ $(3^2 = 9)$ $(4^2 = 16)$ Rate $\uparrow x 27$ Rate $\uparrow x 64$ Rate ↑ x 8 3 $(2^3 = 8)$ $(3^3 = 27)$ $(4^3 = 64)$

7

EXAMPLE

The rate law of the reaction between reactants A & B is found to be as follows:

Rate = $k[A][B]^2$

Determine how the rate would be affected if each of the following changes in concentration occurred:

Change in Molarity (M)	Rate Increases
doubled, [B] unchanged	
unchanged, [B] doubled	
doubled, B tripled	
doubled, B tripled	

EXAMPLE

The reaction $2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$ was studied and the following results were obtained.

Trial	[NO] (mol/L)	[Cl ₂] (mol/L)	Initial Rate (mol/L·min)
1	0.10	0.10	0.18
2	0.10	0.20	0.36
3	0.20	0.20	1.45
4	0.30	0.30	

Determine the complete rate law for this reaction. Use your complete rate law to calculate the initial rate of trial 4.

