4. MOLARITY \& TITRATION

UNIT 1 REACTIONS IN AQUEOUS SOLUTIONS
CH4OS
MR. WIEBE

1

REVIEW - MOLARITY

-Two solutions can contain the same solute and solvent but be quite different because the proportions of those compounds are different.
-Molarity is one way to measure the concentration of a solution.

$$
\text { Molarity }(M)=\frac{\text { moles of solute }}{\text { volume of solution in liters }}
$$

REVIEW - CONCENTRATED VS. DILUTE ACIDS

REVIEW - CALCULATING MOLARITY

What is the molarity of a solution made by dissolving 23.4 g of sodium hydroxide in enough water to form 125 mL of solution? What is the molarity of each of the ions present in the solution?

REVIEW - USING MOLARITY IN STOICHIOMETRY

Coppright 2000 Jotn Wley and Sors, ins.

5

STOICHIOMETRY OF NEUTRALIZATION REACTIONS

Calculate the volume of 0.250 M strontium hydroxide solution (base) required to react fully neutralize 125.0 mL of 0.150 M hydrochloric acid (HCl).

STOICHIOMETRY OF NEUTRALIZATION REACTIONS

125 mL of sodium hydroxide base is mixed with 175 ml of 0.200 M sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. The resulting solution is completely neutral. What is the concentration of the sodium hydroxide?

TITRATION

Titration is a technique in which one can calculate the unknown concentration of a solution from the known concentration of another solution.

TITRATION - DEEP DIVE

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

-In every neutralization reaction, the H^{+}from the acid reacts in a $1: 1$ ratio with the OH^{-}from the base.
-If you add 5 moles of H^{+}from an acid, it will react with 5 moles of OH^{-}from a base.
-If you can determine the moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$in your known, you can calculate the moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$present in the unknown.

9

TITRATION DATA ANALYSIS

Table 1: The Titration of 10.0 mL of $\mathrm{HCl}(\mathrm{aq})$ with 0.100 M NaOH			
Titration Trial \#	Final Volume $\mathrm{NaOH}(\mathrm{mL}$)	Initial Volume $\mathrm{NaOH}(\mathrm{mL}$)	Volume NaOH Used (mL)
1	12.2	0.0	
2	23.7	12.2	
3	35.1	23.7	
Average Volume of NaOH Used to Neutralize the $\mathrm{HCl}(\mathrm{mL})$:			

AT LEAST TWO TRIALS WITHIN 0.20 mL OF EACH OTHER

IGNORE OTHERS

SUMMARY PROBLEM

One commercial method of peeling potatoes is to soak them in sodium hydroxide solution for a short time, then spray off the loosened peel. The [NaOH] is normally in the range of 3 M to 6 M . To ensure the range is consistant, periodic titrations are done on the lye. In one titration, it was found that 45.7 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ was needed to neutralize a 20.0 mL sample of NaOH . What was the $[\mathrm{NaOH}]$?

