5. DILUTIONS

CH3OS UNIT 3 - SOLUTIONS WIEBE

WHAT IS A DILUTION?

Concentrated solutions have a relatively high molarity.
Dilute solutions have a relatively low molarity.

It is often faster to prepare a standard solutions by diluting a more concentrated solution.

The following equation can be used to solve dilution
 problems - when water is added or removed from a solution.

$$
M_{1} V_{1}=M_{2} V_{2}
$$

$\mathbf{M}_{\mathbf{1}}=$ the initial molarity $\quad \mathbf{M}_{\mathbf{2}}=$ the final molarity
$\mathbf{V}_{1}=$ the initial volume $\quad \mathbf{V}_{2}=$ the final volume

The Dilution Formula - How it Works

If we have 1 L of 3 M HCl , what is the new concentration if we dilute the acid to 6 L by adding 5 L of water?

$$
\begin{array}{cc}
1 \mathrm{~L} \times \frac{3 \mathrm{~mol}}{1 \mathrm{~L}}=3 \mathrm{~mol} \mathrm{HCl} & \frac{3 \mathrm{~mol} \mathrm{HCl}}{6 \mathrm{~L}}=0.5 \mathrm{M} \\
\mathrm{M}_{1} \mathrm{v}_{1}=3 \mathrm{~mol} & \mathrm{M}_{2} \mathrm{v}_{2}=3 \mathrm{~mol} \\
& 0.0
\end{array}
$$

Dilutions spread the same quantity of solute over a larger volume of solution!

A Practical Dilution...

Every can of Minute Made concentrated frozen orange juice has a volume of 250 mL and a molarity of $1.17 \mathrm{M} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$. To prepare a jug of juice, 3 cans of water are added to one can of frozen juice.

DETERMINE THE MOLARITY OF SUCROSE IN A PREPARED JUG OF OJ.

DETERMINE THE MOLARITY OF SUCROSE IN A PREPARED JUG OF OJ.

EXAMPLE \# 1

What volume of 0.755 M sodium chloride solution is required to prepare 250.0 mL of a 0.500 M solution?

EXAMPLE \#2

A student measures 100.0 mL of a 5.0 M potassium chloride solution and adds enough water to it to make the volume 2.0 L . What will be the molarity of this new solution?

EXAMPLE \#3

How much water would you need to add to 200.0 mL of a 1.50 M sodium nitrate solution to dilute it down to 0.250 M ?

