

BABY STEPS! 1. HBr + $O_2 \rightarrow HOOBr$ Slow elementary step a step involving a one-, 2. HOOBr + HBr \rightarrow 2 HOBr Fast two-, or three-entity collision that cannot 3. HOBr + HBr \rightarrow H₂O + Br₂ Fast be explained by simpler reactions 4. HOBr + HBr \rightarrow H₂O + Br₂ Fast Net. 4 HBr + $O_2 \rightarrow 2 H_2O + 2 Br_2$ ŚŚŚ Complex chemical reactions involving multiple reactant molecules are believed to occur in a series of elementary steps called a reaction mechanism.

3

RATE DETERMINING STEP

Table 1 Examples of Elementary Steps

The rate determining step must <u>agree</u> with the rate law for that reaction.

Elementary step	Rate law equation			
$A \rightarrow products$	rate = $k[A]$			
$A + A \rightarrow \text{products}$	rate = $k[A]^2$			
$A + B \rightarrow \text{products}$	rate = $k[A][B]$			

6

FOR EXAMPLE						
NET REACTION:	$NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$					
RATE LAW:	rate = $k[NO_2(g)]^2$					
<u>PROPOSED</u> <u>MECHANISM:</u>	Step 1: $NO_2(g) + NO_2(g) \xrightarrow{k_1} NO_3(g) + NO(g)$ Step 2: $NO_3(g) + CO(g) \xrightarrow{k_2} NO_2(g) + CO_2(g)$					
WHICH STEP IN THE PROPOSED MECHANISM IS THE RATE DETERMINING STEP?						

EXAMPLE #1									
Step 1:	А	+	В	\rightarrow	С				
Step 2:	С	+	D	\rightarrow	CD				
<u>Step 3:</u>	CD	+	E	\rightarrow	ABE +	D			
Overall :									
Catalyst(s):								
Intermedi	ate(s):								

11

EXAMPLE #2:

The rate law of a chemical reaction was found to be rate= $k[NO][Cl_2]$. The following reaction mechanism was proposed:

Step 1: $NO(g) + Cl_2(g) \rightarrow NOCl_2(g)$ Step 2: $NOCl_2(g) + NO(g) \rightarrow 2 NOCl_2(g)$ Overall:

Intermediate(s):

Which step is the rate determining step? Why?

SUMMARY

- Most chemical reactions occur in a series of elementary steps. The sequence of elementary steps making up a reaction is known as its reaction mechanism.
- A rate law equation can be written for each elementary step of a reaction, and the overall rate law equation for a reaction may be deduced from these.
- The slowest elementary step in a reaction mechanism is the rate-determining step.
- There are two requirements for a plausible reaction mechanism:
 - 1. The elementary steps must combine to give the correct overall balanced equation.
 - 2. The mechanism must agree with the experimentally determined rate law equation.