5. pH OF WEAK ACID SOLUTIONS
 UNIT $4 \quad$ CH4OS WIEBE

1

REVIEW

Which of the following diagrams shows a strong acid dissolved in water? Justify your answer.

REVIEW

Which of the following acids is a strong acid? Justify your answer.

Concentration (M)	pH of Acid 1	ph of Acid 2	ph of Acid 3	pH of Acid 4
0.010	3.44	2.00	2.92	2.20
0.050	3.09	1.30	2.58	1.73
0.10	2.94	1.00	2.42	1.55
0.50	2.69	0.30	2.08	1.16
1.00	2.44	0.00	1.92	0.98

DON'T FORGET...

WEAK ACIDS...

- Are reactant favored equilibriums
- Have K_{a} values to represent equilibrium position
- Require ICE tables to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH

(a) Strong acid

(b) Weak acid

HAVE A PLAN OF ACTION!

Use basic stoichiometry to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$ and the 4-corners diagram to determine $\mathrm{pH} / \mathrm{pOH}$

Use basic stoichiometry to
determine $\left[\mathrm{OH}^{-}\right]$and the 4-corners diagram to determine $\mathrm{pH} / \mathrm{pOH}$

Use an ICE table to determine $\left[\mathrm{OH}^{-}\right]$and the 4-corners diagram to determine $\mathrm{pH} / \mathrm{pOH}$

FOR EXAMPLE

Hydrofluoric acid is used industrially for etching glass, cleaning metals, and manufacturing electronic parts. Determine the pH and the \% ionization of a 0.10 M solution of HF .

FOR EXAMPLE

Hypochlorous acid is the active sanitizer used in swimming pools. Determine the equilibrium constant $\left(K_{a}\right)$ of a 0.100 M sample of acid if it has a pH of 4.23.

PUTTING IT ALL TOGETHER!

1. Calculate the pH and $\%$ ionization of the solution shown.

0.10 M solution of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$.

PUTTING IT ALL TOGETHER!

2. Calculate the pH and $\%$ ionization of the solution after it has been diluted according to the picture.

PUTTING IT ALL TOGETHER - CHALLENGE!

3. What happened to the pH and \% ionization of the weak acid when it was diluted?
4. Explain why this happens using Le Chatelier's Principle.

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow
$$

