

EXAMPLE PART 1 – THE CHEMISTRY...

0.80 moles of H_2 and Cl_2 are initially put in a 4.0 L flask and allowed to reach equilibrium according to the reaction below. Calculate the $[H_2]$ at equilibrium if the equilibrium constant for this reaction at this temperature is 14.

 $H_{2(g)}$ + $CI_{2(g)}$ \rightleftharpoons 2 $HCI_{(g)}$ K = 14

5

7

AN ASSUMPTION THAT IS WORTH MAKING!

THE "100 RULE"

If the [initial] of your starting substances is at least **100x bigger than the K value** for the reaction, you can **ignore "-x" in your ICE table to make the math easier**!

If it isn't, then congratulations! You get to use the **<u>quadratic equation!</u>**

EXAMPLE PART 1 – THE CHEMISTRY

Carbon monoxide gas is a primary starting material in the synthesis of many organic compounds. At 2000°C, K = 6.40 x 10^{-7} for the decomposition of CO₂. Calculate the equilibrium concentrations of all entities if 0.250 mol of CO₂ is initially placed in a 1.000 L closed container at 2000°C.

 $2CO_2(g) \rightleftharpoons 2CO(g) + O_2(g)$

9

