5. WORKING WITH K VALUES

UNIT 4 - CHEMICAL EQUIIIBRIUM

CH4OS MR. WIEBE

1

WORKING WITH K VALUES
INITIAL CONCENTRATIONS

$\mathrm{K}=25$ @ this temp.

1. What will the concentration of
be at equilibrium? concentration of
be at equilibrium?

2. How can we determine this?

GUESS \& CHECK...?

$\mathrm{K}=25$ @ this temp.

3

A MORE EFFICIENT METHOD!

$\square+O$				
I				
\mathbf{C}				
E				

[^0]
EXAMPLE PART 1 - THE CHEMISTRY...

0.80 moles of H_{2} and Cl_{2} are initially put in a 4.0 L flask and allowed to reach equilibrium according to the reaction below. Calculate the $\left[\mathrm{H}_{2}\right]$ at equilibrium if the equilibrium constant for this reaction at this temperature is 14.

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightleftarrows 2 \mathrm{HCl}_{(\mathrm{g})} \quad \mathrm{K}=14
$$

EXAMPLE PART 2 - THE MATH...

EXAMPLE PART 3 - THE ANSWER!

AN ASSUMPTION THAT IS WORTH MAKING!

THE "100 RULE"

If the [initial] of your starting substances is at least 100x bigger than the K value for the reaction, you can ignore "-x" in your ICE table to make the math easier!

If it isn't, then congratulations! You get to use the quadratic equation!

EXAMPLE PART 1 - THE CHEMISTRY

Carbon monoxide gas is a primary starting material in the synthesis of many organic compounds. At $2000^{\circ} \mathrm{C}, \mathrm{K}=6.40 \times 10^{-7}$ for the decomposition of CO_{2}. Calculate the equilibrium concentrations of all entities if 0.250 mol of CO_{2} is initially placed in a 1.000 L closed container at $2000^{\circ} \mathrm{C}$.

$$
2 \mathrm{CO}_{2}(\mathrm{~g}) \rightleftarrows 2 \mathrm{CO}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

9

EXAMPLE PART 2 - THE MATH $2 \mathrm{CO}_{2}(\mathrm{~g}) \quad \underset{2 \mathrm{CO}(\mathrm{g})}{ }+\mathrm{O}_{2}(\mathrm{~g})$

[^0]: $\mathrm{K}=25$ @ this temp.

