

"The Banana Watch"!

ELECTROCHEMISTRY

Electrochemical Cells...Redox in Action!

Electrochemical cells are Batteries

Alkaline Batteries

Car Batteries

Electric Car

Hybrid Electric Car

Powered by a Lithium Rechargeable battery

Cell Phone batteries

Lithium Coin Cell

Space Ship Batteries

Metal Hydride

Notes on Electrochemical Cells

An electrochemical cell – a system of electrodes, electrolytes, and salt bridge that allow oxidation and reduction reactions to occur and electrons to flow through an external circuit.

- 1. **Spontaneous** redox reaction
- 2. **Produces electricity** from chemicals
- 3. Is commonly called a **battery**

The **salt bridge** allows **ions to migrate** from one half-cell to the other without allowing the solutions to mix.

Analyzing Electrochemical Cells

The reaction that is **higher** on the **reduction chart** is the **reduction** and the **lower** is **oxidation** and is **written in reverse**.

For any cell

- Oxidation always occurs at the anode (LEOA) and reduction at the cathode (GERC)
- **Electrons** flow through the **wire** and go from **anode** to **<u>cathode</u> (ALPHABETIC**)
- <u>Anions</u> (- ions) migrate to the <u>anode</u> (an \rightarrow an) and <u>cations</u> (+ions) migrate towards the <u>cathode</u> (cat \rightarrow cat) usually through the <u>salt bridge</u>

ELECTROCHEMICAL CELL ANIMATION

1. Draw and completely analyze a $Cu/Cu^{2+}//Zn^{2+}/Zn$ electrochemical cell.

The **Hydrogen half cell** involves a **gas** and requires an inert or nonreactive **Pt** electrode.

1 M HCl

Draw a $Cr/Cr^{3+}//Ag^{+}/Ag$ electrochemical cell with a KNO₃ salt bridge. 1.

Lowest **Strongest Reducing Agent** Oxidation Anode $Cr_{(s)} \rightarrow Cr^{3+} + 3e^{-}$ $E^{o} = +0.74 v$ (switch sign) Loses mass

<u>LEOA: $Cr_{(s)} \rightarrow Cr^{3+} + 3e^{-}$ </u> $E^{o} = +0.74 v$ $3Ag^+ + Cr \rightarrow Cr^{3+} + 3Ag_{(s)}$ $E_{net}^{o} = +1.54 v$ NET:

Draw a H_2/Ag electrochemical cell with a KNO₃ salt bridge.

 $2Ag^+ + H_2 \rightarrow 2Ag + 2H^+$

0.80 v