6. pH OF WEAK BASE SOLUTIONS

UNIT 4
CH4OS
MR. WIEBE

1

WEAK BASES

- Are reactant favored equilibriums
- Have K_{b} values to represent equilibrium position
- Require ICE tables to determine [OH^{-}] and $\mathrm{pOH} / \mathrm{pH}$
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{BH}^{+}+\mathrm{OH}^{-}$

$K_{b}=\frac{\left[B H^{+}\right]\left[O H^{-}\right]}{[B]}=$???

BE CAREFUL WITH WEAK BASES!

- Weak bases are the conjugate bases of weak acids!
- They are created by dissolving a soluble salt containing the weak base in water.

For example:

Weak Acid	Conj. Base (Weak Base)	Soluble Salt Containing Weak Base
HCN	$\mathrm{CN}-$	NaCN
HF	$\mathrm{F}-$	NaF
$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}-$	$\mathrm{NaCH}_{3} \mathrm{COO}$

TWO COMMON WEAK BASES TO RECOGNIZE:

1. Ammonia $\left(\mathrm{NH}_{3}\right)$
2. Methyamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$

3

$\mathrm{K}_{\mathrm{b}} \text { 's OF WEAK BASES }$	Ionization Constants for Some Acids and Their Conjugate Bases at $25^{\circ} \mathrm{C}$					
	Acid Name	Formula	Ka	Formula	Kb	Base name
	Perchloric acid	HClO_{4}	large	ClO_{4}^{-}	very small	Perchlorate ion
	Sulfuric acid	$\mathrm{H}_{2} \mathrm{SO}_{4}$	large	$\mathrm{HSO}_{4}{ }^{-}$	very small	Hydrogen sulfate ion
	Hydrochloric acid	HCl	large	Cl^{-}	very small	Chloride ion
	Nitric acid	HNO_{3}	large	$\mathrm{NO}_{3}{ }^{-}$	very small	Nitrate ion
The K_{b} of a weak base	Hydronium ion	$\mathrm{H}_{3} \mathrm{O}^{+}$	1.0	$\mathrm{H}_{2} \mathrm{O}$	1.0×10^{-14}	Water
	Sulfurous acid	$\mathrm{H}_{2} \mathrm{SO}_{3}$	1.2×10^{-2}	$\mathrm{HSO}_{3}{ }^{-}$	8.3×10^{-13}	Hydrogen sulfite ion
is related to the K_{a} of the conjugate acid of	Hydrogen sulfate ion	HSO_{4}^{-}	1.2×10^{-2}	$\mathrm{SO}_{4}{ }^{2-}$	8.3×10^{-13}	Sulfate ion
	Phosphoric acid	$\mathrm{H}_{3} \mathrm{PO}_{4}$	7.5×10^{-3}	$\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$	1.3×10^{-12}	Dihydrogen phosphate ion
	Hexaaquairon(III) ion	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$	6.3×10^{-3}	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}$	1.6×10^{-12}	Pentaaquahydroxoiron(II) ion
	Hydrofluoric acid	HF	7.2×10^{-4}	F^{-}	1.4×10^{-11}	Fluoride ion
	Nitrous acid	HNO_{2}	4.5×10^{-4}	$\mathrm{NO}_{2}{ }^{-}$	2.2×10^{-11}	Nitrite ion
that	Formic acid	$\mathrm{HCO}_{2} \mathrm{H}$	1.8×10^{-4}	$\mathrm{HCO}_{2}{ }^{-}$	5.6×10^{-11}	Formate ion
	Benzoic acid	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2} \mathrm{H}$	6.3×10^{-5}	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}_{2}{ }^{-}$	1.6×10^{-10}	Benzoate ion
	Acetic acid	$\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$	1.8×10^{-5}	$\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}$	5.6×10^{-10}	Acetate ion
	Propanoic acid	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$	1.3×10^{-5}	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2}{ }^{-}$	7.7×10^{-10}	Propanoate ion
	Hexaaquaaluminium ion	$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{e}^{3+}{ }^{3+}\right.$	7.9×10^{-6}	$\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{2+}$	1.3×10^{-9}	Pentaaquahydroxoaluminum ion
$(\mathrm{KO})(\mathrm{KO})=\mathrm{K}_{W}$	Carbonic acid	$\mathrm{H}_{2} \mathrm{CO}_{3}$	4.2×10^{-7}	$\mathrm{HCO}_{3}{ }^{-}$	2.4×10^{-8}	Hydrogen carbonate ion
	Hexaaquacopper(ll) ion	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	1.6×10^{-7}	$\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{+}$	6.3×10^{-8}	Pentaaquahydroxocopper(ll) ion
	Hydrogen sulfide	$\mathrm{H}_{2} \mathrm{~S}$	1.0×10^{-7}	HS^{-}	1.0×10^{-7}	Hydrogen sulfide ion
$(\mathrm{Ka})(\mathrm{Kb})=1.0 \times 10^{-14}$	Dihydrogen phosphate ion	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$	6.2×10^{-8}	$\mathrm{HPO}_{4}{ }^{\text {- }}$	1.6×10^{-7}	Hydrogen phosphate ion
	Hydrogen sulfite ion	HSO_{3}^{-}	6.2×10^{-8}	$\mathrm{SO}_{3}{ }^{2-}$	1.6×10^{-7}	Sulfite ion
	Hypochlorous acid	HClO	3.5×10^{-8}	ClO^{-}	2.9×10^{-7}	Hypochlorite ion
	Hexaaqualead(Il) ion	$\left[\mathrm{Pb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	1.5×10^{-8}	$\left[\mathrm{Pb}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{+}$	6.7×10^{-7}	Pentaaquahydroxolead(I) ion
$\mathrm{K}_{\mathrm{b}} \mathrm{NH}_{3}=$	Hexaaquacobalt(I) ion	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right){ }_{6}{ }^{12+}\right.$	1.3×10^{-9}	$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{+}$	7.7×10^{-6}	Pentaaquahydroxocobalt(ll) ion
	Boric acid	$\mathrm{B}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)$	7.3×10^{-10}	$\mathrm{B}(\mathrm{OH})_{4}^{-}$	1.4×10^{-5}	Tetrahydroxoborate ion
	Ammonium ion	NH_{4}^{+}	5.6×10^{-10}	NH_{3}	1.8×10^{-5}	Ammonia
	Hydrocyanic acid	HCN	4.0×10^{-10}	CN^{-}	2.5×10^{-5}	Cyanide ion
	Hexaaquairon(II) ion	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$	3.2×10^{-10}	$\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{+}$	3.1×10^{-5}	Pentaaquahydroxoiron(II) ion
	Hydrogen carbonate ion	$\mathrm{HCO}_{3}{ }^{-}$	4.8×10^{-11}	$\mathrm{CO}_{3}{ }^{2-}$	2.1×10^{-4}	Carbonate ion
	Hexaaquanickel(I) ion	$\left[\mathrm{Ni}_{(\mathrm{H}}^{2} \mathrm{O} \mathrm{O}_{6}\right]^{2+}$	2.5×10^{-11}	$\left.\left[\mathrm{Ni}_{(} \mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{OH}\right]^{+}$	4.0×10^{-4}	Pentaaquahydroxonickel(ll) ion
	Hydrogen phosphate ion	$\mathrm{HPO}_{4}{ }^{\text {- }}$	3.6×10^{-13}	$\mathrm{PO}_{4}{ }^{3-}$	2.8×10^{-2}	Phosphate ion
	Water	$\mathrm{H}_{2} \mathrm{O}$	1.0×10^{-14}	OH^{-}	1.0	Hydroxide ion
	Hydrogen sulfide ion	HS^{-}	1.0×10^{-19}	S^{2-}	1.0×10^{5}	Sulfide ion
	Ethanol	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	very small	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{O}^{-}$	large	Ethoxide ion
	Ammonia	NH_{3}	very small	$\mathrm{NH}_{2}{ }^{-}$	large	Amide ion
	Hydrogen	H_{2}	very small	H^{-}	large	Hydride ion

HAVE A PLAN OF ACTION!

5

FOR EXAMPLE

Ammonia acts as a weak base in solution. It is commonly found in household cleaning solutions such as Windex and toilet bowl cleaners. What is the pH of a 0.050 M solution of ammonia?

WORKING BACKWARDS

Calculate the K_{b} of 0.20 M weak base that has a pH of 11.30 . What is the identity of this substance?

7

