6. THE REACTION QUOTIENT

UNIT 3 - CHEMICAL EQUILIBRIUM

THE IMPORTANCE OF EQ'M POSITION

Diabetics require their blood-glucose eq'm to be maintained at 4-6 $\mathrm{mmol} / \mathrm{L}$.

If this molarity becomes too high or too low, steps must be taken to shift the eq'm back to the desired level.

Blood-glucose meters are used to check the position of the eq'm.

THE REACTION QUOTIENT

If a system starts with quantities of BOTH reactant and product, it is hard to tell which way it will shift to achieve equilibrium.

To solve this problem, you must calculate a reaction quotient.

$$
Q=\frac{[\text { Product }]_{\text {initial }}}{[\text { Reactant }]_{\text {initial }}}
$$

Compare Q to your known K value

4

THE REACTION QUOTIENT

Shifts right

Q

The product concentration is too small. The reaction will reach eq'm by creating more products and using up some reactants

THE REACTION QUOTIENT

$$
\text { If } Q=K_{\text {eq }}
$$

equilibrium

6

THE REACTION QUOTIENT

The product concentration is too large.

If $Q>K_{\text {eq }}$

Shifts left

The reaction will reach eq'm by creating more reactants and using up some products

Q

EXAMPLE 1

10.0 moles of $\mathrm{NH}_{3}, 15.0$ moles of N_{2}, and 10.0 moles of H_{2} are initiallyput in a 5.0 L container. Is the system in equilibrium and how will it shift if it is not?

$$
2 \mathrm{NH}_{3(\mathrm{~g})} \quad \rightleftarrows \quad \mathrm{N}_{2(\mathrm{~g})}+\quad 3 \mathrm{H}_{2(\mathrm{~g})} \quad \mathrm{K}=10
$$

EXAMPLE 2

4.56×10^{-5} moles of $\mathrm{NH}_{3}, 5.62 \times 10^{-4}$ moles of N_{2}, and 2.66×10^{-2} moles of H_{2} are initially put in a 500.0 mL container. Is the system in equilibrium and how will it shift if it is not?

$$
2 \mathrm{NH}_{3(\mathrm{~g})} \quad \rightleftarrows \quad \mathrm{N}_{2(\mathrm{~g})} \quad+3 \mathrm{H}_{2(\mathrm{~g})} \quad \text { Keq }=10
$$

PUTTING IT ALL TOGETHER!

If 4.00 moles of $\mathrm{CO}, 4.00$ moles $\mathrm{H}_{2} \mathrm{O}, 6.00$ moles CO_{2}, and 6.00 moles H_{2} are initially placed in a 2.00 L container at $670^{\circ} \mathrm{C}$. Calculate the equilibrium concentrations of each substance.

$$
\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftarrows \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \quad \mathrm{Keq}=1.6
$$

\square

