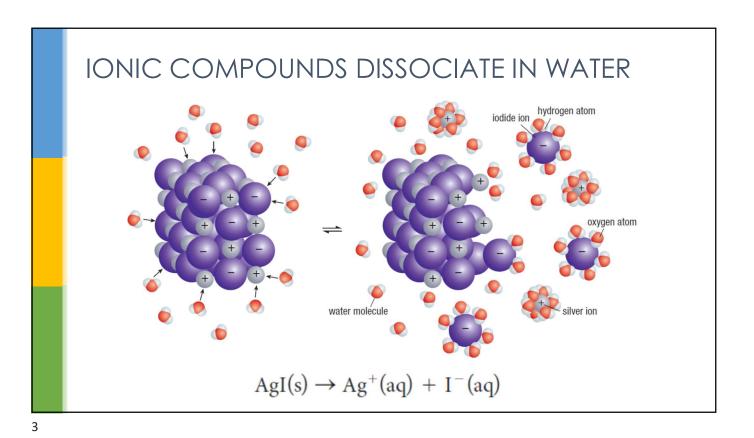
7. SOLUBILITY EQUILIBRIUM

UNIT 3 - CHEMICAL EQUILIBRIUM

CH40S MR. WIEBE

1


REVIEW - WHAT IS SOLUBILITY?

solubility the quantity of solute that dissolves in a given quantity of solvent at a particular temperature; the concentration of a saturated solution at a particular temperature

Figure 1 Barium sulfate makes the large intestine more visible in this X-ray image. Barium ions are toxic to humans, so the low solubility of barium sulfate also protects the patient from any toxic side effects.

2

GENERAL SOLUBILITY

Your data booklet gives you relative solubility

<u>Low Sol means ≤ .1M</u>

CaSO₄ Low

High Sol means > .1 M

Na₃PO₄ High

SOLUBILITY OF COMMON COMPOUNDS IN WATER The term soluble here means > 0.1 mol/L at 25°C.

((egative Ions Anions)	Positive Ions (Cations)	Compou	y or nds
	All	Alkali ions: Li $^+$, Na $^+$, K $^+$, Rb $^+$, Cs $^+$, Fr $^+$	Soluble	
	All	Hydrogen ion: H ⁺	Soluble	
	All	Ammonium ion: NH ₄ ⁺	Soluble	
	Nitrate, NO ₃	All	Soluble	
or	Chloride,CI ⁻ Bromide, Br ⁻	All others	Soluble	
	Iodide, I	Ag ⁺ , Pb ²⁺ , Cu ⁺		Low Solubility
	Sulphate, SO ₄ ²⁻	All others	Soluble	
		$Ag^{i}, Ca^{2i}, Sr^{2i}, Ba^{2i}, Pb^{2i}$		Low Solubility
	Sulphide, S ²⁻	Alkali ions, H^{+} , NH_{4}^{-} , Be^{2+} , Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+}	Soluble	
		All others		Low Solubility
or	Hydroxide, OH	Alkali ions, H ⁺ , NH ₄ ⁺ , Sr ²⁺	Soluble	
		All others		Low Solubility
	Phosphate, PO ₄ ³⁻ Carbonate, CO ₃ ²⁻	Alkali ions, H ⁺ , NH ₄ ⁺	Soluble	
	Sulphite, SO, 2-	All others		Low Solubility

4

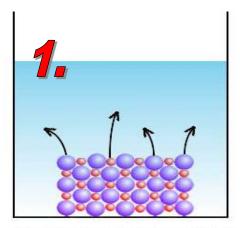
SATURATED SOLUTIONS ARE EQUILIBRIUMS!

This part of the unit is all about the equilibrium that forms when solutes are dissolved in solution...the Ksp and the solubility of saturated solutions.

Unsaturated Solutions

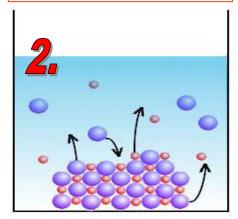
- Not full -more solid dissolves
- The rate of dissolving > the rate of crystallizing
- Not at equilibrium

Saturated Solutions


- Full-more solid doesn't dissolve
- The rate of dissolving = the rate of crystallizing
- At equilibrium

PhET Simulation - Solubility

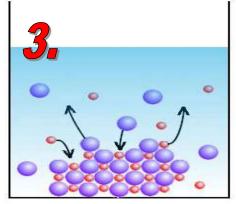
5


SOLUBILITY EQUILIBRIUM

$$AgI(s) \to Ag^+(aq) \, + \, I^-(aq)$$

Salt is initially put into the water and begins dissolving.

$$Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI(s)$$


Salt continues to dissolve; however, dissolved ions will also precipitate. Because the salt dissolves faster than its ions precipitate, the net movement is towards dissolution.

6

SOLUBILITY EQUILIBRIUM

solubility equilibrium a dynamic equilibrium between a solute and a solvent in a saturated solution in a closed system

$$AgI(s) \Longrightarrow Ag^{+}(aq) + I^{-}(aq)$$

Eventually, the rate of dissolution will equal the rate of precipitation. The solution will be in equilibrium, but the ions wil continue to dissolve and precipitate.

7

SOLUBILITY PRODUCT CONSTANT (Ksp.)

$$AgI(s) \Longrightarrow Ag^{+}(aq) + I^{-}(aq)$$

solubility product constant (K_{sp}) the value obtained from the equilibrium law applied to a saturated solution

$$K = \frac{[\mathbf{C}]^c [\mathbf{D}]^d}{[\mathbf{A}]^a [\mathbf{B}]^b}$$

$$K = \frac{[Ag^{+}(aq)][I^{-}(aq)]}{[AgI(s)]}$$

$$K_{\rm sp} = [Ag^+(aq)][I^-(aq)]$$

INTERPRETING K_{sp} VALUES

The larger the Ksp value, the more soluble the solute.

All Ksp values are <1, meaning all solutes with Ksp values are reactant favoured (very low solubility).

Ksp values increase with temperatures.

SOLUBILITY PRODUCT CONSTANTS AT 25°C

Name	Formula	\mathbf{K}_{sp}
Silver chloride	AgCl	1.8×10^{-10}
Silver iodate	$AgIO_3$	3.2×10^{-8}
Silver iodide	AgI	8.5×10^{-17}

$$AgI(s) \rightleftharpoons Ag^{+}(aq) + I^{-}(aq)$$

9

EXAMPLE 1: THE EQUILIBRIUM EXPRESSION

Write the solubility product constant equation for a saturated solution of aluminum sulphate, $Al_2(SO_4)_3$, at 25°C.

EXAMPLE 2: CALCULATING K_{SP}

The solubility of PbBr₂ is $0.012 \, M \, @ \, 25 \, ^{\circ}$ C. Calculate the Ksp. Is lead(II) bromide more or less soluble than barium carbonate?

11

EXAMPLE 3: CALCULATING SOLUBILITY FROM K_{SP}

Calculate the molar solubility @ 25° C for Cu(IO₃)₂. From your ICE table, communicate the molarity of each dissolved ion in this saturated solution.