CHEMISTRY 30S

The Alchemist's Notebook

UNIT 1 - ELEMENTS \& COMPOUNDS

"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive..?"

Cartoon courtesy of NearingZero.net

LET'S GET STARTED!

By the end of this unit, you should be able to:
\checkmark Write large and small numbers in scientific notation and perform calculations on them.
\checkmark Round numbers to the correct degree of accuracy using significant digit rules.
\checkmark Convert between common units of measurement using unit analysis method.
\checkmark Evaluate the atomic structure of atoms, ions, and isotopes and calculate average atomic mass of them.
\checkmark Write formulas and names for a variety of chemical compounds including complex ionic.
\checkmark Describe the concept of the mole and calculate the molar mass of various substances.
\checkmark Solve problems requiring conversions between moles, mass, volume, and number of particles.
\checkmark Determine the \% composition of elements in a compound
\checkmark Determine the empirical formula of a compound from the \% composition.
\checkmark Determine the molecular formula of a compound from the empirical formula and molar mass.

THIS UNIT WILL TAKE APPROXIMATELY 20 LESSONS TO COMPLETE AND WILL COUNT 20% TOWARDS YOUR FINAL MARK.

1. SCIENTIFIC NOTATION

CH3OS UNIT 1 WIEBE

1

SCIENTIFIC VALUES IN SCIENTIFIC NOTATION

Name	Symbol	Value
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Acceleration due to gravity	g	$9.81 \mathrm{~m} / \mathrm{s}^{2}$
Speed of light in a vacuum	c	$3.00 \times 10^{2} \mathrm{~m} / \mathrm{s}$
Speed of sound in air at STP		$3.31 \times 10^{2} \mathrm{~m} / \mathrm{s}$
Mass of Earth		$5.98 \times 10^{24} \mathrm{~kg}$
Mass of the Moon		$7.35 \times 10^{22} \mathrm{~kg}$
Mean radius of Earth		$6.37 \times 10^{6} \mathrm{~m}$
Mean radius of the Moon		$1.74 \times 10^{6} \mathrm{~m}$
Mean distance - Earth to the Moon		$3.84 \times 10^{8} \mathrm{~m}$
Mean distance - Earth to the Sun		$1.50 \times 10^{11} \mathrm{~m}$
Rest mass of the electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Rest mass of the proton	m_{p}	$1.67 \times 10^{-27} \mathrm{~kg}$
Rest mass of the neutron	m_{n}	$1.67 \times 10^{-27} \mathrm{~kg}$

DEALING WITH MEASUREMENTS

In chemistry, we deal with some very LARGE numbers:
1 mole $=602000000000000000000000$

We also deal with some very SMALL numbers:
Mass of an electron $=0.000000000000000000000000000000091 \mathrm{~kg}$

4

DEALING WITH MEASUREMENTS

Imagine the difficulty of calculating the mass of 1 mole of electrons!
0.000000000000000000000000000000091 kg $\times 602000000000000000000000$

SCIENTIFIC NOTATION

A method of representing very large or very small numbers in the form:

$M \times 10^{n}$

- M is a number between 1 and 10
- n is an integer

WRITING NUMBERS IN SCIENTIFIC NOTATION

Step \# 1: Insert an understood decimal point
Step \#2: Decide where the decimal must end up so that one non-zero number is to its left
Step \#3: Count how many places you bounce the decimal point
Step \#4: Re-write in the form $M \times 10^{n}$

If moving the decimal makes the
number smalle, , then the exponent gets larger.

If moving the decimal makes the number larger, then the exponent gets smaller.

EXAMPLE \#1

5732 grams

If moving the decimal makes the number smaller, then the exponent gets larger.

EXAMPLE \#2

0.0050 m

If moving the decimal makes the number
larger, then the exponent gets smaller.

CALCULATIONS IN SCIENTIFIC NOTATION

 When multiplying and dividing two numbers in scientific notation, always do it in THREE STEPS!1. Front numbers
2. Exponents
3. Units
3.45×10^{-2}

$$
\left(1.0 \times 10^{5} \mathrm{~kg}\right)\left(1.0 \times 10^{-2} \mathrm{~kg}\right)
$$

MULTIPLYING SCIENTIFIC NOTATION

EXAMPLE \# 1
$\left(3.0 \times 10^{5} \mathrm{~cm}\right)\left(2.0 \times 10^{4} \mathrm{~cm}\right)$

DIVIDING SCIENTIFIC NOTATION

EXAMPLE \#2
$\frac{\left(9 \times 10^{7} \mathrm{~kg}\right)}{\left(3 \times 10^{3} \mathrm{~s}\right)}$

12

DIVIDING SCIENTIFIC NOTATION

EXAMPLE \#3

$\frac{\left(4 \times 10^{-3} \mathrm{~s}\right)}{\left(1 \times 10^{-5} \mathrm{~s}\right)}$

SCIENTIFIC NOTATION ON YOUR CALCULATOR

CHALLENGE!

HOW MANY KILOGRAMS WOULD 1 MOLE OF ELECTRONS WEIGH?

2. SIGNIFICANT DIGITS

CH3OS UNIT 1 WIEBE

WHICH SCALE IS MOST RELIABLE?

Good Balance

Balance Pro

Exacto-Balance

Good Balance

Balance Pro

Exacto-Balance

COMMUNICATING RELIABILITY

When measuring with ANY device, write all the certain values PLUS ONE ESTIMATE!

3

WHAT ARE SIGNIFICANT DIGITS?

- A set of rules that communicate the reliability of a measurement.
- By following the rules, you ensure that your answer to a calculation that uses measurements is as reliable as it should be.
- In other words, they allow you to round your answer to a calculation correctly.

ANALOGY:

Attempting to Locate Your Friends in 2004 (before smartphones)

Me: Where are you guys?

Friend \#1: Uh... we are on a road with buildings on it.

Friend \#2: Yah...we're standing near a blue car.

Me: Oh cool. Sounds like you are on the southwest corner of Manitoba Avenue and Main Street. I'll be right there.

YOUR CONCLUSION FROM THIS INFORMATION IS TOO DETAILED AND THEREFOR UNRELIABLE. THE SAME IS TRUE OF MEAUREMENTS!

THE RULES

1. Leading Zeros are NOI significant.

0.00245 L

THE RULES

2. Trailing Zeros in a non-decimal number are NOT significant.

5500 g

THE RULES

3. ALL other zeros and numbers are significant.
10.25 g
3.00 mL
1.0×10^{-7}

THE RULES

4. Round your answer to the number of sig digs in the least accurate measurement you started with.

$$
\frac{3.0 \times 10^{-3} \mathrm{~g}}{1.50 \times 10^{4} \mathrm{~cm}^{3}}
$$

9

EXAMPLE:

Good Balance
Density of Rock Using Exacto-Balance:

3. UNIT ANALYSIS

$$
\text { CH3OS UNIT } 1 \text { WIEBE }
$$

REVIEW

A rectangular parcel of land has the dimensions of 14500 m long and 2000 m wide.

1. Convert each of these values into scientific notation.
2. How many significant digits are each of these values measured to?
3. Without using a calculator, calculate the area of the land. Round your answer correctly.

BASIC UNIT ANALYSIS

In the far away country of Yrtsimehc, the monetary currency is based on "izzles" rather than "dollars". The following equivalencies are true in this currency:

1 frizzle $=8$ crizzles 6 drizzles $=0.5$ sizzles 2 crizzles $=10$ drizzles

If you have $\underline{75 \text { frizzles in }}$ the bank, how many sizzles is this equivalent to?

EXAMPLE \# 1

Given that:

$$
\begin{aligned}
& 2.21 \mathrm{lb}=1.00 \mathrm{~kg} \\
& 1.00 \mathrm{~atm}=101.3 \mathrm{kPa} \\
& 14 \mathrm{lb}=1 \text { stone } \\
& 16 \mathrm{oz}=1 \mathrm{lb}
\end{aligned}
$$

$4.54 \mathrm{~L}=1.00 \mathrm{gal}$
$1.61 \mathrm{~km}=1.00$ mile
$2000 \mathrm{lb}=1$ ton

Mr. Wiebe weighs 14.3 stone. How many kilograms is this?

EXAMPLE \#2

Given that:

$$
\begin{aligned}
& 2.21 \mathrm{lb}=1.00 \mathrm{~kg} \\
& 1.00 \mathrm{~atm}=101.3 \mathrm{kPa} \\
& 14 \mathrm{lb}=1 \mathrm{stone} \\
& 16 \mathrm{oz}=1 \mathrm{lb}
\end{aligned}
$$

$4.54 \mathrm{~L}=1.00 \mathrm{gal}$
$1.61 \mathrm{~km}=1.00$ mile
$2000 \mathrm{lb}=1$ ton

A recipe calls for 4 oz of sugar. How many grams of sugar would this be?

Very big

Gigantic Megaphones Killed 1 Million Microscopic Nanobots

Kinda big
There are 10 or 10^{1} of the smaller prefix in 1 of the larger prefix.

King \underline{H} enry $\underline{\text { Died }}$ Drinking Chocolate $\underline{\text { Milk }}$

EXAMPLE \#3

Visible light, as well as ultraviolet, infrared, X-ray, and other radiation, is characterized by what is called wavelength. The wavelength of certain infrared light is 30 micrometers.

How many nanometers is this?

EXAMPLE \#4

A sample of an unknown metal has a volume of $125 \mathrm{~m}^{3}$

How many cubic kilometers $\left(\mathrm{km}^{3}\right)$ is this?

EXAMPLE \#5

Ethanol, the alcohol found in beer, wine, and spirits, has a density of $0.789 \mathrm{~g} / \mathrm{mL}$.

What is this density in $\mathrm{mg} / \mathrm{kL}$?

4. ATOMIC STRUCTURE

CH3OS UNIT 1 - ELEMENTS \& COMPOUNDS

1

A HISTORY OF THE ATOM: THEORIES AND MODELS

How have our ideas about atoms changed over the years? This graphic looks at atomic models and how they developed.

THE ATOMIC MODEL

The most common model of the atom is like a mini solar system. While this is not truly accurate, it works for now!

PLANETARY MODEL

PUTTING IN TO PERSPECTIVE

> ...the nucleus
> would be the size
> of a pea at the
> 50 -yard line.

WHAT MAKES UP AN ATOM?

Most people already know that the atom is made up of three main parts, the protons and neutrons in the nucleus and the electrons somewhere outside of the nucleus.

	PROTONS	NEUTRONS	ELECTRONS
SYMBOL			
CHARGE			
LOCATION			

5

ATOMIC NOTATION

Mass number
Number of protons and neutrons in atom

Atomic number
Number of protons in atom

Atomic symbol
Abbreviation used to represent atom in chemical formulas

ATOMIC NOTATION

CARBON - 12

7

ATOMIC NUMBER (Z)

The proton is the particle that determines the identity of the element.

The atomic number of an element is the number of protons found in the nucleus of the atom.

ATOMIC NUMBER (Z)	NUMBER OF PROTONS	IDENTITY OF ELEMENT
23		
92		Chlorine
		Magnesium

ATOMIC NUMBER (Z)

Atoms (as opposed to ions) are electrically neutral, meaning they have one electron for every proton.

ELEMENT	NUMBER OF PROTONS	NUMBER OF ELECTRONS
sodium		
potassium		
sulphur		
bromine		

9

MASS NUMBER (A)

The mass of an atom is found in its nucleus.

The mass number of an atom is the sum of its protons and neutrons.

Determining Neutrons:

EXAMPLE \#1

Determine the number of protons, electrons, and neutrons in:
a) ${ }^{210} \mathrm{~Pb}$
b) ${ }^{34} \mathrm{~S}$

IONS

Chemical changes involve the gaining or losing of electrons only.

Ions are atoms (or groups of atoms) that have gained or lost electrons during a reaction to become electrically charged.

Magnesium Cation Lost 2 electrons

Phosphide Anion
Gained 3 electrons

EXAMPLE \#2

Determine the number of protons, neutrons, and electrons present in the following substances:
207
Pb
82
209
Pb
82
${ }^{207} P \mathrm{~B}^{2+}$
82

YOUR TURN!

NASA has just discovered a delicious new element on Mars that smells and tastes like lunch meat. The have called it Bolognium (Bo). Determine the number of protons (p^{+}), neutrons (n^{0}) and electrons (e^{-}) in the following atomic notation of Bolognium.
293
Bo
115
296
Bo
115
294 2-
Bo
115

ISOTOPES

Isotopes are atoms of the same element having different masses due to varying numbers of neutrons.

PROTIUM
'H

DEUTERIUM
${ }_{2}^{2} \mathrm{H}$

TRITIUM
${ }_{3}^{3} \mathrm{H}$

COMMON MEDICAL ISOTOPES

Radioactive Isotope	Applications in Medicine
Cobalt-60	Radiation therapy to prevent cancer
Iodine-131	Locate brain tumors, monitor cardiac, liver and thyroid activity
Carbon-14	Study metabolism changes for patients with diabetes, gout and anemia
Carbon-11	Tagged onto glucose to monitor organs during a PET scan
Sodium-24	Study blood circulation
Thallium-201	Determine damage in heart tissue, detection of tumors

AVERAGE ATOMIC MASS

- The average mass of all the naturally occurring isotopes of that element.
- This explains why atomic masses on your periodic table are decimals and not whole numbers, as you might expect.

Isotope	Symbol	Composition of the nucleus	$\%$ in nature
Carbon- 12	${ }^{12} \mathrm{C}$	6 protons 6 neutrons	98.89%
Carbon- 13	${ }^{13} \mathrm{C}$	6 protons 7 neutrons	1.11%
Carbon- 14	${ }^{14} \mathrm{C}$	6 protons 8 neutrons	$<0.01 \%$

EXAMPLE \# 3

Use the mass spectrometry data below to calculate the average atomic mass of iron.

Table 2. Stable Isotopes of Iron

Isotope	Mass (amu)	\% Abundance
${ }^{54} \mathrm{Fe}$	53.94	5.845
${ }^{56} \mathrm{Fe}$	55.93	91.75
${ }^{57} \mathrm{Fe}$	56.94	2.119

YOUR TURN

Use the mass spectrometry data below to calculate the average atomic mass of neon.

Strontium		
Isotope	Mass (amu)	Abundance
$\mathrm{Sr}-84$	83.913428	0.56%
$\mathrm{Sr}-86$	85.909273	9.86%
$\mathrm{Sr}-87$	86.908902	7.00%
$\mathrm{Sr}-88$	87.905625	82.58%

5. CHEMICAL COMPOUNDS

CH3OS UNIT 1 - ELEMENTS \& COMPOUNDS

1

IONIC COMPOUNDS

- Ionic compounds contain positive ions called cations. and negative ions called anions.
- Cations usually form when metal atoms lose electrons and anions usually form when non-metal atoms gain electrons.
- These ions combine in specific ratios

Crystal Lattice of NaCl (table salt)
 to form solid crystal lattices.

BINARY IONIC COMPOUNDS

 HOW DO I RECOGNIZE THESE?Example: Aluminum oxide
Example: CaCl_{2}

Example: Iron(III) chloride
Example: $\mathrm{Cu}_{2} \mathrm{~S}$

POLYATOMIC IONIC COMPOUNDS

- Many ionic compounds, such as baking soda (sodium bicarbonate) and battery acid (hydrogen sulphate) contain more than 2 different elements.
- These compounds contain a POLYATOMIC ION, a group of non-metal atoms that bond together and have a negative charge.

$$
\left[\begin{array}{c}
\because 0 \\
: \ddot{O} \\
\because-N-\ddot{O}:
\end{array}\right]^{-} \quad \text { nitrate - } \mathrm{NO}^{-}
$$

POLYATOMIC IONIC COMPOUNDS

HOW DO I RECOGNIZE THESE?

Example: barium nitrate
Example: ammonium sulfate

Example: Zinc hydroxide

POLYATOMIC IONIC COMPOUNDS (cont'd)

HOW DO I RECOGNIZE THESE?

Example: CaCO_{3}
Example: $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

Example: $\mathrm{NH}_{4} \mathrm{NO}_{3}$

COVALENT MOLECULES

Some elements naturally exist in molecule form rather than atom form. They are called diatomic elements

$$
\begin{gathered}
\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{O}_{2}, \mathrm{I}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2} \\
\text { "Have } \text { No ㅌear Of Ice Cold Beer!" }
\end{gathered}
$$

COVALENT COMPOUNDS

Some covalent compounds have common names like :
$\mathrm{H}_{2} \mathrm{O}=$ water $=$ dihydrogen monoxide
$\mathrm{NH}_{3}=$ ammonia $\quad=$ nitrogen trihydride
$\mathrm{CH}_{4}=$ methane $=$ carbon tetrahydride
$\mathrm{H}_{2} \mathrm{O}_{2}=$ hydrogen peroxide $=$ dihydrogen dioxide
$\mathrm{O}_{3}=$ ozone $=$ trioxide

COVALENT COMPOUNDS

First element:

- Keeps its element name
- Gets a prefix if there is a subscript on it

Second element:

- Use the root of the element name plus the -ide suffix
- Always use a prefix on the second element

Number	Prefix
1	mono-
2	di-
3	tri-
4	tetra-
5	penta-
6	hexa-
7	hepta-
8	octa-
9	nona-
10	deca-

COVALENT COMPOUNDS HOW DO I RECOGNIZE THESE?

Example: $\mathrm{P}_{2} \mathrm{O}_{5}$
Example: $\mathrm{N}_{2} \mathrm{O}$

Example: carbon monoxide
Example: nitrogen triiodide

6. THE MOLE

CH3OS UNIT 1 - ELEMENTS \& COMPOUNDS

1

QUANTIFYING ATOMS \& MOLECULES

Atoms and molecules are extremely small.

If they are so small and so light, how can we weigh them?

We weigh large numbers of them.

THE MOLE CONCEPT

1 dozen = 12
1 gross $=144$
1 ream $=500$
1 mole $=6.02 \times 10^{23}$

This is called Avogadro's number

A MOLE IS A BIG, BIG NUMBER!

The mole is a large number of particles. The following conversion factor can be used to convert between particles and moles of any substance.

$$
\frac{6.02 \times 10^{23} \text { particles }}{1 \text { mole }} O R \quad \frac{1 \text { mole }}{6.02 \times 10^{23} \text { particles }}
$$

THE MOLE MAP

EXAMPLE \# 1
If your pencil contained 9.5×10^{23} atoms of carbon in the form of graphite, how many moles of carbon does your pencil contain?

EXAMPLE \#2

If you breath out 4.5×10^{-3} moles of CO_{2} every breath, how many molecules of carbon dioxide are you exhaling?

7

MOLAR MASS

- The atomic mass of an element/compound is the sum of the number of protons \& neutrons in the nucleus of the atom(s).
- The molar mass of an element/compound is the mass of one mole of particles and the unit is grams/mole.

ATOMIC MASS = MOLAR MASS!

MOLAR MASS
He
CO_{2}
$\mathrm{Ni}_{2}\left(\mathrm{CO}_{3}\right)_{3}$

Molar mass can be used as a conversion factor between the mass of a chemical and the number of moles of that chemical.

THE MOLE MAP

EXAMPLE \#3

A liter of regular gasoline typically contains about 19 moles of octane molecules $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$.

How many grams of octane would this be?

How many molecules of octane are present?

EXAMPLE \#4
It is recommended that a person eat no more than 6.0 g of table salt (sodium chloride) per day.

How many moles of salt would this be?

How many molecules of salt is this?

THE MOLE MAP

EXAMPLE \#5

The Hindenburg was a hydrogen filled airship that exploded spectacularly in 1937. It contained approximately 2×10^{8} liters of
 hydrogen gas.

How many moles of hydrogen was this?

How many molecules of hydrogen was this?

EXAMPLE \#6

A pop bottle rocket contains $4.5 \times 10^{-2} \mathrm{~mol}$ of hydrogen gas at STP (standard temperature and pressure: $0^{\circ} \mathrm{C}$ and 1 atmosphere...more on this later).

How many grams of hydrogen would this be?

What is the volume of hydrogen in the bottle?

SUMMARY

1 mole of anything!
= molar mass of substance
$=6.02 \times 10^{23}$ particles
$=22.4 \mathrm{~L}$ of gas @ STP

7. PERCENT COMPOSITION

CH3OS UNIT 1 - ELEMENTS \& COMPOUNDS

LAW OF DEFINITE PROPORTIONS

In other words...

- Waters mass composition is ALWAYS 11% H:89\% O
Joseph-Louis Proust

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}
$$

- Waters mole composition is ALWAYS 2 moles H : 1 mole O

Sucrose is the form of sugar found in soda \& candy. Excess sucrose in your diet has been linked to obesity, diabetes, and heart disease.

Detemine the \% composition by mass of each element in a mole of sucrose.

1. Determine the formula.
2. Find proportions.
3. Calculate the molar mass.

Ritalin© is a medication used to treat Attention Deficit Hyperactivity Disorder (ADHD). Is has the molecular structure shown here.

Detemine the \% composition by mass of each element in a mole of Ritalin.

Acetaminophen is an analgesic molecule that reduces pain by inhibiting the transmission of pain signals to your brain.

Determine the \% composition by mass of each
 element in a mole of acetaminophen.

8. EMPIRICAL FORMULAS

CH3OS UNIT 1 - ELEMENTS \& COMPOUNDS

1

REVIEW

Penicillin is an antibiotic molecule that has saved millions of lives from bacterial infection. Alexander Fleming accidentally discovered it in 1928, when he came back from a vacation and found that a green mold called Pennicilium notatum had contaminated Petri dishes in his lab and were killing some of the bacteria he'd been growing.

$$
\begin{array}{ll}
\text { Black = Carbon } & \text { White = Hydrogen } \\
\text { Blue = Nitrogen } & \text { Red = Oxygen }
\end{array}
$$

Yellow = Sulphur

1. Write the chemical formula of penicillin.
2. Determine the molar mass.
3. What is the percent composition of penicillin?
4. A vet gives your dog 75 mg of penicillin. How many moles is this? How many molecules are in the dose?

REVIEW ANSWERS

TYPES OF CHEMICAL FORMULAS

 Every compound has 3 formulas that represent it:1. Empirical formula: the lowest whole number ratio of atoms or moles of atoms in a compound.
2. Molecular formula: the true number of atoms or moles of atoms of each element in the formula of a compound.
3. Structural formula: a diagram of the arrangement of the atoms in a molecule of that chemical.

FOR EXAMPLE

BUTANE

- Structural Formula:

- Molecular Formula:

PROPANE

- Structural Formula:

- Molecular Formula:
- Empirical Formula:
- Empirical Formula:

QUICK CHECK...

Structural Formula	Molecular Formula	Empirical Formula
H O 1 $\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{H}$ 1 H		
O O		
$\mathrm{H}-\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{O}-\mathrm{H}$		

EMPIRICAL FORMULAS

- Chemists can take an unknown compound and determine the \% composition of each element in the compound through a process called combustion analysis.
- From these \% compositions, the empirical formula can be determined, and the compound can be identified.

7

EXAMPLE \# 1

RDX is an organic explosive used extensively in World War II in combination with TNT. It is still used today by the military in many countries.
The percent composition of RDX was found to be 16.2% carbon, 2.73% hydrogen, 37.8% nitrogen, and the remainder is oxygen. Determine the empirical formula of RDX.

EXAMPLE \#2

Nicotine is an addictive ingredient found in tobacco products. It is linked to many different health problems, including cancer, lung disease, and aneurysms. The percent composition of nicotine was found to be 74.02% carbon, 8.71% hydrogen, and the remainder is nitrogen. Determine the empirical formula of nicotine.

9. MOLECULAR FORMULAS
 CH3OS UNIT 1 WIEBE

REVIEW

- We can use a variety of methods to find the $\underline{\%}$ composition of an unknown compound (ie. combustion analysis, elemental analysis)
- From the \% composition, we can determine the empirical formula of a compound (last lesson)
- The empirical formula of a compound is the lowest whole number ratio of elements in the compound.

MOLECULAR FORMULA DETERMINATION

- Using a mass spectrometer, we can determine the molar mass of an unknown compound.
- If we compare this measured molar mass with the molar mass of the empirical formula, we can determine the molecular formula of the unknown compound!

3

RELATING EMPIRICAL TO MOLECULAR

	EMPIRICAL FORMULA	E.F. MOLAR MASS	M.F. MOLAR MASS	MOLECULAR FORMULA
EXAMPLE \#1	$\mathbf{C}_{\mathbf{4}} \mathbf{H}_{\mathbf{8}} \mathbf{N O}$		$\mathbf{2 5 8 . 2 4} \mathbf{~ g / m o l}$	
EXAMPLE \#2	$\mathbf{C}_{\mathbf{7}} \mathbf{H}_{\mathbf{1 2}}$		$\mathbf{1 9 2 . 2 4} \mathbf{g / m o l}$	

EXAMPLE \# 1

Caffeine is the component of coffee and tea that stimulates the cerebral cortex. A typical cup of coffee or tea contains about 0.10 g of caffeine. Combustion analysis indicates that caffeine is 49.47% carbon, 5.20% hydrogen, 16.48% oxygen, and the remainder nitrogen. If the molar mass of caffeine is $194.22 \mathrm{~g} / \mathrm{mol}$, what is the empirical and molecular formula of caffeine?

5

EXAMPLE \#2

Serotonin is a compound that conducts nerve impulses in the brain and influences the moods we experience. It is composed of 68.2% carbon, 6.86% hydrogen, 15.9% nitrogen, and 9.08% oxygen. Its molar mass is $176 \mathrm{~g} / \mathrm{mol}$. Determine the empirical and molecular formula for serotonin.

Fundamental Constants

Name	Symbol	Value
Speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Magnitude of charge of electron	e	$1.602 \times 10^{-19} \mathrm{C}$
Planck's constant	h	$6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Boltzmann constant	k	$1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Avogadro's number	N_{A}	$6.022 \times 10^{23} \mathrm{particles} / \mathrm{mol}$
Gas constant, SI	R	$8.314 \mathrm{~L} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{K}$
Gas constant	R	$0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
Mass of electron	m_{e}	$9.109 \times 10^{-31} \mathrm{~kg}$
Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Mass of neutron	m_{n}	$1.675 \times 10^{-27 \mathrm{~kg}}$
Faraday constant	\mathscr{F} or F	$96485 \mathrm{C} / \mathrm{mol} \mathrm{e}$

International System (SI) Units

Physical Quantity	Name of Unit	Symbol
	base units	
Length (I)	Meter	m
Mass (m)	Kilogram	kg
Time (t)	Second	s
Temperature (T)	Kelvin	K
Electric Current (I)	Ampere	A
Luminous Intensity (φ)	Candela	cd
Amount of Substance	Mole	mol
	derived units	
Area (A)	square meter	m^{2}
Volume (V)	cubic meter	m^{3}
Frequency (v)	Hertz	$\mathrm{Hz}\left[\mathrm{s}^{-1}\right]$
Speed, velocity (v)	meter per second	m / s
Force (F)	Newton	$\mathrm{N}\left[\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}\right]$
Pressure (P)	Pascal	$\mathrm{Pa}\left[\mathrm{N} / \mathrm{m}^{2}\right]$

Common SI Prefixes

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10^{12}	tera	T	10^{-2}	centi	c
10^{9}	giga	G	10^{-3}	milli	m
10^{6}	mega	M	10^{-6}	micro	μ
10^{3}	kilo	k	10^{-9}	nano	n
			10^{-12}	pico	p
			10^{-15}	femto	f

acetate	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	TABLE OF POLYATOMIC IONS		oxalate perchlorate	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
arsenate	$\mathrm{AsO}_{4}{ }^{\text {- }}$	dihydrogen phosphate $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$			
arsenite	$\mathrm{AsO}_{3}{ }^{3-}$	hydrogen carbonate	$\mathrm{HCO}_{3}{ }^{-}$	periodate	$\mathrm{IO}_{4}{ }^{-}$
benzoate	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	hydrogen oxalate	$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$	permanganate	$\mathrm{MnO}_{4}{ }^{-}$
borate	$\mathrm{BO}_{3}{ }^{\text {- }}$	hydrogen sulfate	$\mathrm{HSO}_{4}{ }^{-}$	peroxide	$\mathrm{O}_{2}{ }^{2-}$
bromate	$\mathrm{BrO}_{3}{ }^{-}$	hydrogen sulfide	HS HSO	phosphate	$\mathrm{PO}_{4}{ }^{3}$
carbonate	$\mathrm{CO}_{3}{ }^{2-}$	hydrogen sulfite hydroxide	$\mathbf{O H}^{-}$	pyrophosphate sulfate	SO
chlorate	ClO_{3}	hypochlorite	ClO^{-}	sulfite	SO_{3}
chlorite chromat	Cl	iodate	IO_{3}	thiocyanate	SCN^{-}
C	CrO_{4}^{-}	monohydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$	thiosulfate	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
		nitrate	NO_{3}	POSITIVE POLYATO	MIC IONS
cyanide		nitrite	NO_{2}	ammonium	$\mathrm{NH}_{4}{ }^{+}$
dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2}$	orthosilicate	$\mathrm{SiO}_{4}{ }^{4-}$	hydronium	$\mathrm{H}_{3} \mathrm{O}^{+}$

PERIODIC TABLE OF IONS

13	
5	
B	
boron	

Al^{3+} $\mathrm{Al}^{3+} \mathrm{Si} \quad \mathrm{P}^{3-} \quad \mathrm{S}^{2-} \quad \mathrm{Cl}^{-} \quad$| Ar |
| ---: |

 gallium germanium arsenide selenide bromide krypton的 $\underset{\times}{\stackrel{\circ}{0}}$

 $\stackrel{\sim}{\sim}$
The Periodic Table of the Elements

颜®	
${ }_{\text {E }}^{\text {E }}$	
	唇历
	唇の

