CHEMISTRY 30S

The Alchemist's Notebook

UNIT 1 – ELEMENTS & COMPOUNDS

"Perhaps one of you gentlemen would mind telling me just what it is outside the window that you find so attractive..?"

Cartoon courtesy of NearingZero.net

NAME:

LET'S GET STARTED!

By the end of this unit, you should be able to:

- ✓ Write large and small numbers in scientific notation and perform calculations on them.
- ✓ Round numbers to the correct degree of accuracy using significant digit rules.
- ✓ Convert between common units of measurement using unit analysis method.
- ✓ Evaluate the atomic structure of atoms, ions, and isotopes and calculate average atomic mass of them.
- ✓ Write formulas and names for a variety of chemical compounds including complex ionic.
- ✓ Describe the concept of the mole and calculate the molar mass of various substances.
- ✓ Solve problems requiring conversions between moles, mass, volume, and number of particles.
- \checkmark Determine the % composition of elements in a compound
- \checkmark Determine the empirical formula of a compound from the % composition.
- ✓ Determine the molecular formula of a compound from the empirical formula and molar mass.

THIS UNIT WILL TAKE APPROXIMATELY 20 LESSONS TO COMPLETE AND WILL COUNT 20% TOWARDS YOUR FINAL MARK.

1. SCIENTIFIC NOTATION

CH30S UNIT 1

WIEBE

SCIENTIFIC VALUES IN SCIENTIFIC NOTATION

Name	Symbol	Value
Universal gravitational constant	G	6.67 × 10 ⁻¹¹ N•m ² /kg ²
Acceleration due to gravity	g	9.81 m/s ²
Speed of light in a vacuum	с	3.00 × 10 ⁸ m/s
Speed of sound in air at STP		3.31 × 10 ² m/s
Mass of Earth		5.98 × 10 ²⁴ kg
Mass of the Moon		7.35 × 10 ²² kg
Mean radius of Earth		6.37 × 10 ⁶ m
Mean radius of the Moon		1.74 × 10 ⁶ m
Mean distance – Earth to the Moon		3.84 × 10 ⁸ m
Mean distance – Earth to the Sun		1.50 × 10 ¹¹ m
Rest mass of the electron	me	9.11 × 10 ⁻³¹ kg
Rest mass of the proton	mp	1.67 × 10 ⁻²⁷ kg
Rest mass of the neutron	mn	1.67 × 10 ⁻²⁷ kg

DEALING WITH MEASUREMENTS

Imagine the difficulty of calculating the mass of 1 mole of electrons!

\$

THE RULES

1. Leading Zeros are **<u>NOT</u>** significant.

0.00245 L

REVIEW

A rectangular parcel of land has the dimensions of 14500 m long and 2000 m wide.

- 1. Convert each of these values into scientific notation.
- 2. How many significant digits are each of these values measured to?
- 3. Without using a calculator, calculate the area of the land. Round your answer correctly.

BASIC UNIT ANALYSIS In the far away country of Yrtsimehc, the monetary currency is based on "izzles" rather than "dollars". The following equivalencies are true in this currency: frizzle = 8 crizzles drizzles = 0.5 sizzles crizzles = 10 drizzles If you have <u>75 frizzles</u> in the bank, <u>how many sizzles</u> is this equivalent to?

EXAMPLE #3Visible light, as well as ultraviolet, infrared, X-ray, and other
radiation, is characterized by what is called wavelength.
The wavelength of certain infrared light is 30 micrometers.How many nanometers is this?

EXAMPLE #5

Ethanol, the alcohol found in beer, wine, and spirits, has a density of 0.789 g/mL.

What is this density in mg/kL?

4. ATOMIC STRUCTURE

CH30S UNIT 1 – ELEMENTS & COMPOUNDS

WHAT MAKES UP AN ATOM?

Most people already know that the atom is made up of three main parts, the protons and neutrons in the **nucleus** and the electrons somewhere outside of the **nucleus**.

	PROTONS	NEUTRONS	ELECTRONS
Symbol			
CHARGE			
LOCATION			

ATOMIC NUMBER (Z)

The proton is the particle that determines the identity of the element.

The atomic number of an element is the number of protons found in the nucleus of the atom.

ATOMIC NUMBER (Z)	NUMBER OF PROTONS	IDENTITY OF ELEMENT
23		
92		
		Chlorine
		Magnesium

ATOMIC NUMBER (Z)

Atoms (as opposed to ions) are electrically neutral, meaning they have one electron for every proton.

ELEMENT	NUMBER OF PROTONS	NUMBER OF ELECTRONS
sodium		
potassium		
sulphur		
bromine		

EXAMPLE #1

Determine the number of protons, electrons, and neutrons in:

a) ²¹⁰ Pb	
b) ³⁴ S	

11

IONS

Chemical changes involve the gaining or losing of electrons only.

lons are atoms (or groups of atoms) that have gained or lost electrons during a reaction to become electrically charged.

COMMON MEDICAL ISOTOPES

Radioactive Isotope	Applications in Medicine	
Cobalt-60	Radiation therapy to prevent cancer	
Iodine-131	Locate brain tumors, monitor cardiac, liver and thyroid activity	
Carbon-14	Study metabolism changes for patients with diabetes, gout and anemia	
Carbon-11	Tagged onto glucose to monitor organs during a PET scan	
Sodium-24	Study blood circulation	
Thallium-201	Determine damage in heart tissue, detection of tumors	

AVERAGE ATOMIC MASS • The average mass of all the naturally occurring isotopes of that element. • This explains why atomic masses on your periodic table are decimals and not whole numbers, as you might expect. Isotope Symbol **Composition of** % in nature the nucleus 12**C** 98.89% Carbon-6 protons 12 6 neutrons 13**C** Carbon-1.11% 6 protons 13 7 neutrons 14**C** Carbon-6 protons <0.01% 14 8 neutrons

19

EXAMPLE # 3

Use the mass spectrometry data below to calculate the average atomic mass of iron.

Table 2. Stable Isotopes of Iron

Isotope	Mass (amu)	% Abundance
⁵⁴ Fe	53.94	5.845
⁵⁶ Fe	55.93	91.75
⁵⁷ Fe	56.94	2.119

YOUR TURN

Use the mass spectrometry data below to calculate the average atomic mass of neon.

Strontium			
Isotope	Mass (amu)	Abundance	
Sr-84	83.913428	0.56%	
Sr-86	85.909273	9.86%	
Sr-87	86.908902	7.00%	
Sr-88	87.905625	82.58%	

COVALENT COMPOUNDS First element: Number Prefix Keeps its element name 1 mono-• Gets a prefix if there is a 2 disubscript on it 3 tri-4 tetra-5 penta-Second element: 6 hexa- Use the root of the element 7 heptaname plus the -ide suffix 8 octa-9 nona-Always use a prefix on the 10 decasecond element

6. THE MOLE

CH30S

UNIT 1 - ELEMENTS & COMPOUNDS

QUANTIFYING ATOMS & MOLECULES

Atoms and molecules are extremely small.

If they are so small and so light, how can we weigh them?

We weigh large numbers of them.

THE MOLE CONCEPT

1 dozen = 12 1 gross = 144 1 ream = 500 1 mole = 6.02×10^{23}

This is called **Avogadro's number**

A MOLE IS A BIG, BIG NUMBER!The mole is a large number of particles. The following
conversion factor can be used to convert between
particles and moles of any substance. $\underline{S.02 \times 10^{23} \text{ particles}}_{1 \text{ mole}}$ OR $\underline{1 \text{ mole}}_{6.02 \times 10^{23} \text{ particles}}$

EXAMPLE #1

If your pencil contained 9.5 x 10²³ **atoms** of carbon in the form of graphite, how many **moles** of carbon does your pencil contain?

MOLAR MASS

- The <u>atomic mass</u> of an element/compound is the sum of the number of protons & neutrons in the nucleus of the atom(s).
- The <u>molar mass</u> of an element/compound is the mass of one mole of particles and the unit is grams/mole.

ATOMIC MASS = MOLAR MASS!

EXAMPLE #4

It is recommended that a person eat no more than **6.0 g** of table salt (sodium chloride) per day.

How many **moles** of salt would this be?

How many **molecules** of salt is this?

13

EXAMPLE #5

The Hindenburg was a hydrogen filled airship that exploded spectacularly in 1937. It contained approximately **2 x 10⁸ liters** of hydrogen gas.

How many **moles** of hydrogen was this?

How many molecules of hydrogen was this?

7. PERCENT COMPOSITION

CH30S

UNIT 1 – ELEMENTS & COMPOUNDS

LAW OF DEFINITE PROPORTIONS

Joseph-Louis Proust

 $2H_2O \rightarrow 2H_2 + O_2$

 $100 \text{ g} \rightarrow 11 \text{ g} + 89 \text{ g}$

In other words...

- Waters <u>mass</u> composition is <u>ALWAYS</u> 11% H : 89% O
- Waters <u>mole</u> composition is <u>ALWAYS</u> 2 moles H : 1 mole O

8. EMPIRICAL FORMULAS

CH30S UNIT 1 – ELEMENTS & COMPOUNDS

1

REVIEW

Penicillin is an antibiotic molecule that has saved millions of lives from bacterial infection. Alexander Fleming accidentally discovered it in 1928, when he came back from a vacation and found that a green mold called *Pennicilium notatum* had contaminated Petri dishes in his lab and were killing some of the bacteria he'd been growing.

Black = Carbon Blue = Nitrogen Yellow = Sulphur White = Hydrogen Red = Oxygen

QUICK CHECK...Structural FormulaEmpirical Formula $H \circ$
 $H \circ$ $H \circ$
 $H \circ$

/

EXAMPLE #1

RDX is an organic explosive used extensively in World War II in combination with TNT. It is still used today by the military in many countries.

The percent composition of RDX was found to be 16.2% carbon, 2.73% hydrogen, 37.8% nitrogen, and the remainder is oxygen. Determine the empirical formula of RDX.

<text>

RELATING EMPIRICAL TO MOLECULAR

	EMPIRICAL FORMULA	e.f. molar mass	m.f. molar mass	MOLECULAR FORMULA
EXAMPLE #1	C ₄ H ₈ NO		258.24 g/mol	
EXAMPLE #2	C ₇ H ₁₂		192.24 g/mol	
			<u> </u>	<u> </u>

EXAMPLE #1

Caffeine is the component of coffee and tea that stimulates the cerebral cortex. A typical cup of coffee or tea contains about 0.10 g of caffeine. Combustion analysis indicates that caffeine is 49.47% carbon, 5.20% hydrogen, 16.48% oxygen, and the remainder nitrogen. If the molar mass of caffeine is 194.22 g/mol, what is the empirical and molecular formula of caffeine?

EXAMPLE #2

Serotonin is a compound that conducts nerve impulses in the brain and influences the moods we experience. It is composed of 68.2% carbon, 6.86% hydrogen, 15.9% nitrogen, and 9.08% oxygen. Its molar mass is 176 g/mol. Determine the empirical and molecular formula for serotonin.

Fundamental Constants

Name	Symbol	Value
Speed of light in a vacuum	с	3.00 ×10 ⁸ m/s
Magnitude of charge of electron	e	1.602×10-19 C
Planck's constant	h	6.626×10-34 J·s
Boltzmann constant	k	1.381×10 ⁻²³ J/K
Avogadro's number	NA	6.022×10 ²³ particles/mol
Gas constant, SI	R	8.314 L·kPa/mol·K
Gas constant	R	0.08206 L·atm/mol·K
Mass of electron	m _e	9.109×10-31 kg
Mass of proton	m _p	1.673×10 ⁻²⁷ kg
Mass of neutron	mn	1.675×10-27 kg
Faraday constant	♂ or F	96 485 C/mol e-

International System (SI) Units

Physical Quantity	Name of Unit	Symbol
	base units	Ē
Length (I)	Meter	m
Mass (m)	Kilogram	kg
Time (t)	Second	s
Temperature (T)	Kelvin	K
Electric Current (I)	Ampere	Α
Luminous Intensity (ϕ)	Candela	cd
Amount of Substance	Mole	mol
	derived units	
Area (A)	square meter	m ²
Volume (V)	cubic meter	m ³
Frequency (v)	Hertz	Hz [s-1]
Speed, velocity (v)	meter per second	m/s
Force (F)	Newton	N [kg·m/s ²]
Pressure (P)	Pascal	Pa [N/m ²]

Common SI Prefixes

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10 ¹²	tera	Т	10-2	centi	с
10^{9}	giga	G	10-3	milli	m
10 ⁶	mega	Μ	10-6	micro	μ
10 ³	kilo	k	10-9	nano	n
			10-12	pico	р
			10-15	femto	f

e.g. $1 \mu g = 1 \times 10^{-6} g$

¹⁸	He Helium	Ne Neon	8 Ar argon	36 Kr krypton	54 Xe xenon	86 Rn radon	71 Lu ³⁺ Iutetium 103 Lr ³⁺ awrencium
10	1 2 H ⁻ hydride	9 10 F ⁻ fluoride	17 18 CI ⁻ chloride al		dide -	At ⁻ latide	
E OI	16 h	1. 0	S ²⁻ Ifide	34 35 Se ²⁻ Br ⁻ selenide bromide	5 e ²⁻ uride		69 Tm ³⁺ ytterbium(II) thulium Yb ²⁺ ytterbium(II) 101Md2+ 102 No ²⁺ mendelevium (II) Md ³⁺ No ³⁺ II
PERIODIC TABLE OF IONS atomic Feat ion number Feat ion iron (II) ion 17 18	(IUPAC)	و ب	15 16 phosphide su	3 3 As ³⁻ arsenide se	51 Sb ³⁺ 52 antimony(III) T Sb ⁵⁺ tell antimony(V) tell	83 Bi3+ 84 24 bismuth(III) polonium(II) polonium(III) Bi5+ Po4+ 44 bismuth(V) polonium(IV) polonium(IV)	
DIC T KEY ion (III)	Fe ²⁺	~ "	_	33 a		+ i+	
		6 C carbon	14 Si n silicon	32 Ge ⁴⁺ germanium	50	82 le	
PERIO	symbol- 13	5 B boron	13 Al ³⁺ aluminum	31 Ga ³⁺ gallium	49 In ³⁺ indium	81 TI ⁺ thallium (TI ³⁺ thallium(1	66 67 Dy ³⁺ Ho ³⁺ dysprosium holmium 98 99 Cf ³⁺ Es ³⁺ californium einsteinium
04	3 ² + ² - ⁴	+ 132 - +	⁺	0 Zn ²⁺ zinc	48 Cd ²⁺ cadmium	⁸⁰ Hg ²⁺ ⁸¹ Tl ⁺ mercury (II) thallium (I) Hg ²⁺ Tl ³⁺ mercury (I) thallium(III)	
	P ₂ C SO	thiocyanate SCN ⁻ thiosulfate S ₂ O ₃ ²⁻ POSITIVE POLYATOMIC IONS	H ₃ 0 ⁺	²⁹ Cu ²⁺ ³⁰ copper (I) Cu ⁺ copper (I)	V	79 Au ³⁺ 80 gold (III) mer Au ⁺ H gold (I) mer	1 1 20 2 1 2 2 2 2 2 2
oxalate perchlorate periodate permanganate peroxide phosphate	pyrophosphate sulfate sulfite	thiocyanate thiosulfate POSITIVE POLY	hydronium 10		V	79 90	
oxalate perchlo perioda permar peroxid phosph	pyroph sulfate sulfite	thiod thiog	hydro 10	28 nic	46 pala pala	78 plati plati	
IC IONS H ₂ PO ₄ - HCO ₃ - HC ₂ O ₄ - HS ⁻ HS ⁻	HSO ^{3 -} OH ⁻ CIO ⁻	HPO4 ²⁻ NO3 ⁻ NO3 ⁻	SiO4 ⁴	²⁷ Co ²⁺ cobalt (II) Co ³⁺ cobalt (III)		77 Ir ⁴⁺ iridium	63 63 ame
ATOMIC phate H nate H e H e H e		hosphate E	8	²⁶ Fe ³⁺ iron (III) Fe ²⁺ iron (II)	44 Ru ³⁺ ruthenium(III) Ru ⁴⁺ ruthenium(IV)	76 Os ⁴⁺ osmium	
TABLE OF POLYATOMIC IONSdihydrogen phosphateH2PO4-hydrogen carbonateHCO3-hydrogen oxalateHC04-hydrogen sulfateHSO4-hydrogen sulfateHSO4-	hydrogen sulfite hydroxide hypochlorite	ogen phos	icate 7	25 Mn2+ 26 manganese(II) in Mn4+ manganese(IV) ir		5 76 Re ⁷⁺ rhenium os	59 60 61 Pr ³⁺ Nd ³⁺ Pm ³⁺ praseodymium neodymium promethium 91 Pa ⁵⁺ 92 U6+ 93 protactinium(N) uranium (N) Np ⁵⁺ protactinium(N) uranium (N)
ABLE O Jihydrog Nydroge Nydroge Nydroge	hydrogen sul hydroxide hypochlorite	iodate monohydrogen ph nitrate	orthosilicate	Cr ³⁺ ²⁵ mium (III) mang Cr ²⁺ n mium (III) mang	42 43 Mo ⁶⁺ Tc ⁷⁺ molybdenum technitium	75 rh	Nd ³⁺ odymium U ⁶⁺ U ⁴⁺ mium (IV)
			<u>ی</u> ہے	24 chroi	(11) (11) (11) (11) (11) (11) (11) (11)	74 tu	59 Pr ³⁺ praseodymium 91 Pa ⁵⁺ 92 U ⁶⁺ protactinium()) uranium (V) Pa ⁴⁺ protactinium(V) uranium (V)
CH ₃ COO ⁻ AsO ₄ ³⁻ AsO ₃ ³⁻ C ₆ H ₅ COO ⁻ BO ₃ ³⁻ BrO ₃ ⁻	CO3 ²⁻ CIO3 ⁻	Cr0 ²⁻ CN0 ⁻ CN ⁻	Cr ₂ O ₇ ²⁻ 5			73 Ta ⁵⁺ tantalum	
a 9 a a		e	dichromate C	22 T14+ titanium (IV) T13+ titanium (III)	40 Zr ⁴⁺ zirconium	2 Hf ⁴⁺ hafnium	58 Ce ³⁺ cerium 90 Th ⁴⁺ thorium
acetate arsenate arsenite benzoate borate bromate	carbonate chlorate chlorite	chromate cyanate cyanide	dichro 3	21 22 Sc ³⁺ tita scandium tita	39 4 γ3+ yttrium z	57 72 La ³⁺ lanthanum ha	89 Ac ³⁺ actinium
	2	4 Be ²⁺ beryllium	12 Mg ²⁺ magnesium	20 21 Ca ²⁺ S calcium sca	39 y1	56 57 Ba ²⁺ L barium lant	88 89 Ra ²⁺ A radium acti
_	1 H ⁺ Iydrogen	Li ⁺ Be	11 12 Na ⁺ M ₈ sodium magn	19 20 K ⁺ Ca potassium calc	37 38 Rb ⁺ Sr ²⁺ rubidium strontium	55 56 Cs ⁺ Ba cesium barr	87 88 Fr+ Rc francium radi
2	1 Hydr	Iith	11 N sod	19 Pota:	37 R	55 C C ces	87 F

	۴ 0 O	5 0 ⁰⁰	5 5		50 0 → 0	02)	www.co.(+
18	Helium 4.00	10 20.18	Argon 18 39.95	Krypton 36 83.80	xenon 54 131.29	Radon 86 Rn (222.02)	oganesson 118 00 (294)
	17	Fluorine 9 19.00	Chlorine 17 35.45	Bromine 35 Br 79.90	126.90	Astatine 85 At (209.99)	Tennessine 117 TS (294)
	16	охудел 0 0 8	Sulfur 16 32.07	Selenium 34 Se 78.96	Tellurium 52 Te 127.60	Polonium 84 PO (208.98)	Livemonium 116 LV (293)
	15	Nitrogen 7 14.01	Phosphorus 15 P 30.97	Arsenic 33 AS 74.92	Antimony 51 Sb 121.76	Bismuth 83 83 83 83 83 208.98	Moscovium 115 MC (288.19)
	14	саrton 6 12.01	^{silicon} 3 28.09	Gemanium 32 Ge 72.61	ыт 50 Sn 118.71	B2 82 82 207.20	Flerovium 114 Fl (289.19)
	13	5 5 5 m	Aluminum 13 26.98	Gallium 31 69.72	Indium 49 114.82	71 81 204.38	Nihonium 113 Nh (284.18)
nents	#	Avg. Mass	12	Zine Zn 65.39	Cadmium 48 48 112.41	Mercury 80 100.59 200.59	Copernicium 112 Cn (285.17)
Elen	Atomic #	- Avg.	£	copper 29 63.55 63.55	A1 47 Ag 107.87	сон 79 Ди 196.97	Roegentium 111 Rg (280.16)
The Periodic Table of the Elements		-29 ←	9	Nickel 28 58.69	Palladium 46 Pd 106.42	Platinum 78 Pt 195.08	Darmstadtium 110 DS (281.16)
ble c	 Mercury 80 	200.59	б	27 27 58.93	Rhodium 45 102.91	17 77 192.22	Meitherium 109 Mt (276.15)
lic Ta	name	0		гол 76 55.85	Ruthenium 44 Ru 101.07	Osmium 76 OS 190.23	Hassium 108 HS (277.15)
erioc	Element name-	cy.	2	Manganese 25 Mn 54.94	Technetium 43 TC (97.91)	Rhenium 75 Re 186.21	Bohrium 107 Bh (270)
he F	Ele		9	Chromium 24 Cr 52.00	Molybdenum 42 MO 95.94	Tungsten 74 W 183.84	Seaborgium 106 Sg (271.13)
	asses		Q	Vanadium 23 50.94	Nicbium 41 80 92.91	Tarttalum 73 180.95	Dubnium 105 DD (268.13)
	Average relative masses are rounded to two decimal places.		4	Titanium 22 47.88	Zircanium 40 21.22	Hafnium 72 Hf 178.49	Rutherfordium 104 Rf (265.12)
	Average relativ are rounded to decimal places.		8	21 21 8C 44.96	^{Yttrium} 39 88.91	Lutetium 71 Lu 174.97	Lawrencium 103 Lr (262.11)
						57-70	89-102
	8	B eryllium B C 9.01	Magnesium 12 Mg 24.31	Calcium 20 40.08	strontium 38 Sr 87.62	Barium 56 Ba 137.33	Radium 88 Ra (226.03)
-	Hydrogen	Lithium 3 6.94	adium 11 22.99	Potassium 19 39.10	Rubidum 37 Rb 85.47	655 55 132.91	Francium 87 Fr (223.02)

	Lanthanum 57	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytterbium 70
'lanthanides	La	ce	P	Nd	Pm	Sm	Eu	Gd	Tb	2	ч	ш	Tm	γb
	138.91	140.12	140.91	144.24	(145)	150.36	151.97	157.25	158.93	162.50	164.93	167.26	168.93	173.05
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Femium	Mendelevium	Nobelium
	89	06	91	92	63	94	95	96	97	98	66	100	101	102
**actinides	Ac	Ч	Pa	>	Np	Pu	Am	c ^m	¥	င် ပ	Еs	Fm	Md	No
	(227.03)	232.04	231.04	238.03	(237.05)	(244.06)	(243.06)	(247.07)	(247.07)	(251.08)	(252.08)	(257.10)	(258.10)	(259.10)