CHEMISTRY 40S

## The Alchemist's Notebook

## UNIT 1 - AQUEOUS CHEMICAL REACTIONS



NAME:

## LET'S GET STARTED!

By the end of this unit, you should be able to:

- Explain examples of solubility and precipitation at the particulate and symbolic levels.
- Use a table of solubility rules to predict the formation of a precipitate in a precipitation reaction.
- Design and test a procedure to experimentally identify unknown ionic salts.
- Write a net ionic equation for a precipitation reaction.
- Explain the difference between strong and weak electrolytes.
- Write balanced neutralization reactions involving strong acids and bases
- Calculate the concentration or volume of an acid or a base from the concentration and volume of an acid or a base required for neutralization.
- Perform a titration and use the data collected to determine the molarity of an acid or base.
- Explain the process of oxidation and reduction in terms of electrons gained and lost as well as oxidizing and reducing agents.
- Determine the oxidation numbers for atoms in compounds and ions.
- Use oxidation numbers to identify reactions as redox or non-redox.
- Balance oxidation-reduction reactions using redox methods.


## THIS UNIT WILL TAKE APPROXIMATELY 20 LESSONS TO COMPLETE AND WILL COUNT FOR 20\% OF YOU MARK IN THIS COURSE.

# REVIEW OF CH3O 

## CH4OS

MR. WIEBE

1

## SCIENTIFIC NOTATION

Put the following measurement into scientific notation. 5732 grams

If moving the decimal makes the number smaller, then the exponent gets draer.

## SCIENTIFIC NOTATION

Put the following measurement into scientific notation.

### 0.0050 m

## If moving the decimal makes the number Orers then the exponent gets smaller.

## MULTIPLYING SCIENTIFIC NOTATION

 $\left(3.0 \times 10^{5} \mathrm{~cm}\right)\left(2.0 \times 10^{4} \mathrm{~cm}\right)=?$
## DIVIDING SCIENTIFIC NOTATION

$\frac{\left(4 \times 10^{-3} s\right)}{\left(1 \times 10^{-5} s\right)}$

5

## SCIENTIFIC NOTATION ON YOUR CALCULATOR



Calculate the volume of a container with a length of 3.25 x $10^{3} \mathrm{~m}$, width of $8.93 \times 10^{5} \mathrm{~m}$ and height of $2.11 \times 10^{-2} \mathrm{~m}$.

## UNIT ANALYSIS

In the far away country of Yrtsimehc, the monetary currency is based on "izzles" rather than "dollars". The following relationships are true in this currency:

$$
1 \text { frizzle }=8 \text { crizzles } 6 \text { drizzles }=0.5 \text { sizzles } 2 \text { crizzles }=10 \text { drizzles }
$$

If you have 75 frizzles in the bank, how many sizzles is this equivalent to?

Very big


Gigantic Megaphones Killed 1 Million Microscopic Nanobots

Kinda big


9

## UNIT ANALYSIS

Given that:

$$
\begin{aligned}
& 2.21 \mathrm{lb}=1.00 \mathrm{~kg} \\
& 1.00 \mathrm{~atm}=101.3 \mathrm{kPa} \\
& 14 \mathrm{lb}=1 \text { stone } \\
& 16 \mathrm{oz}=1 \mathrm{lb}
\end{aligned}
$$

$$
4.54 \mathrm{~L}=1.00 \mathrm{gal}
$$

$$
1.61 \text { km = } 1.00 \text { mile }
$$

$$
2000 \mathrm{lb}=1 \text { ton }
$$

Mr. Wiebe weighs 14.3 stone. How many kilograms is this?

## UNIT ANALYSIS

Given that:

$$
\begin{aligned}
& 2.21 \mathrm{lb}=1.00 \mathrm{~kg} \\
& 1.00 \mathrm{~atm}=101.3 \mathrm{kPa} \\
& 14 \mathrm{lb}=1 \text { stone } \\
& 16 \mathrm{oz}=1 \mathrm{lb}
\end{aligned}
$$

$4.54 \mathrm{~L}=1.00 \mathrm{gal}$
$1.61 \mathrm{~km}=1.00$ mile
$2000 \mathrm{lb}=1$ ton

A recipe calls for 4 oz of sugar. How many grams of sugar would this be?

## IONIC COMPOUNDS

Example: Aluminum oxide

Example: $\mathrm{CaCl}_{2}$

Example: Iron(III) chloride
Example: $\mathrm{Cu}_{2} \mathrm{~S}$

## IONIC COMPOUNDS

Example: barium nitrate
Example: Zinc hydroxide

Example: $\mathrm{NH}_{4} \mathrm{NO}_{3}$
Example: $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

## COVALENT MOLECULES

Some elements naturally exist in molecule form rather than atom form. They are called diatomic elements

# $\mathrm{H}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2}, \mathrm{O}_{2}, \mathrm{I}_{2}, \mathrm{Cl}_{2}, \mathrm{Br}_{2}$ "Have No Fear Of Ice Cold Beer!" 

## COVALENT COMPOUNDS

Example: $\mathrm{P}_{2} \mathrm{O}_{5}$

Example: carbon monoxide
Example: nitrogen triiodide

## THE MOLE



MOLAR MASS He

lithium nitrate
$\mathrm{Ni}_{2}\left(\mathrm{CO}_{3}\right)_{3}$

Molar mass is used as a conversion factor between the mass of a chemical and the number of moles of that chemical.

17

## EXAMPLE \# 1

A liter of regular gasoline typically contains about 19 moles of octane molecules $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$.


How many grams of octane would this be?

How many molecules of octane are present?

## EXAMPLE \#2

It is recommended that a person eat no more than 6.0 g of table salt (sodium chloride) per day.

How many moles of salt would this be?

How many molecules of salt is this?

$$
\begin{aligned}
& \text { BALANCING CHEMICAL EQUATIONS } \\
& \ldots \mathrm{Al}+\quad \_\mathrm{O}_{2} \rightarrow \ldots \mathrm{Al}_{2} \mathrm{O}_{3} \\
& \ldots \mathrm{Na}(\mathrm{OH})+\ldots \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow \ldots \mathrm{Na}\left(\mathrm{NO}_{3}\right)+\ldots \mathrm{Fe}(\mathrm{OH})_{3} \\
& \ldots \mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \\
& \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

## BALANCED FORMULA EQUATIONS

A piece of iron reacts with oxygen gas to produce rust, $\mathrm{Fe}_{2} \mathrm{O}_{3}$.

| Words |  |  |  |
| :--- | :--- | :--- | :--- |
| Formulas |  |  |  |
| Pictures |  |  |  |
|  |  |  |  |
| Balanced Equation |  |  |  |



# STOICHIOMETRY 

## Balanced Equation:



What mass of iron must have been present to produce $\underline{25.0}$ $g$ of rust?

## STOICHIOMETRY

Percentage Yield $=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times \quad 100 \%$
5.0 g of iron is completely reacted with excess oxygen and forms 6.29 g of rust. What is the \% yield of this reaction?

## MOLARITY

The number of moles of the chemical solute per litre of solution.
$\mathrm{mol} / \mathrm{L}=\mathrm{M}$

## For example:

1.8 M HCl means 1.8 moles of HCl per litre of solution.

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { volume of solution in liters }}
$$

Table 1 Amount Concentrations of Common Stock Acid Solutions

| Stock acid | Amount <br> concentration <br> (mol/L) |
| :--- | :---: |
| hydrochloric acid, <br> $\mathrm{HCl}(\mathrm{aq})$ | 12 |
| nitric acid, <br> $\mathrm{HNO}_{3}(\mathrm{aq})$ | 16 |
| sulfuric acid, <br> $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ | 18 |

## CALCULATING MOLARITY

A student makes some iced tea as per the instructions on the container. Calculate the molarity of sugar in the juice. (Assume the sugar in powdered drinks is all sucrose $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { volume of solution in liters }}
$$

Nutrition Facts
Valeur nutritive
Per 2 tbsp $(25 \mathrm{~g}) /$ pour 2 c . à soupe $(25 \mathrm{~g})$
1 cup $(250 \mathrm{~mL})$ prepared
1 tasse ( 250 mL ) préparée

| Amount <br> Teneur | \% valeur quatidienne |
| :--- | :--- |
| Calories / Calories 100 |  |
| Fat / Lipides 0 g | $0 \%$ |
| Saturated / saturés 0 g | $0 \%$ |
| + Trans / trans 0 g | $0 \%$ |
| Cholesterol / Cholestérol 0 mg |  |
| Sodium / Sodium 0 mg | $0 \%$ |
| Potassium / Potassium 15 mg | $1 \%$ |
| Carbohydrate / Glucides 25 g | $8 \%$ |
| Fibre / Fibres 0 g | $0 \%$ |
| Sugars / Sucres 24 g |  |
| Protein / Protéines 0 g |  |

## WORKING WITH MOLARITY

Household chlorine bleach is a 0.067 M solution of sodium hypochlorite. What mass of NaClO solute is required to prepare 225 mL of bleach solution?


## DILUTION

Concentrated solutions have a relatively high molarity.
Dilute solutions have a relatively low molarity.
It is often faster to prepare a standard solutions by diluting a more concentrated solution.

The following equation can be used to solve dilution
 problems - when water is added or removed from a solution.

$$
M_{1} V_{1}=M_{2} V_{2}
$$

$M_{1}=$ the initial molarity
$M_{2}=$ the final molarity
$\mathbf{V}_{1}=$ the initial volume $\quad \mathbf{V}_{\mathbf{2}}=$ the final volume

## DILUTION

A student measures 100.0 mL of a 5.0 M potassium chloride solution and adds enough water to it to make the volume 2.0 L . What will be the molarity of this new solution?

## DILUTION

How much water would you need to add to 200.0 mL of a 1.50 M sodium nitrate solution to dilute it down to 0.250 M ?

## DILUTION

If you were to mix 200.0 mL of a 0.750 M NaCl solution with 300.0 mL of a 0.250 M NaCl solution, what would the final molarity of the solution be?

# 1. PROPERTIES OF SOLUTIONS 

UNIT 1 AQUEOUS CHEMICAL REACTIONS
CH4OS MR. WIEBE

1

## SOLUTIONS



Solutions are defined as homogeneous mixtures of two or more pure substances.

The solvent is present in greatest abundance.

All other substances are solutes.

## WATER IS POLAR

- Water is a covalent compound.
- Each atom of hydrogen and oxygen are bonded together with a shared pair of electrons.
- Oxygen pulls the pair of electrons closer to its nucleus.
- This creates a slight negative charge on each oxygen atom and a slight positive charge on the hydrogen atom.


3

## VISUALIZING POLARITY

## Molecule Polarity



Three Atoms


Two Atoms

## DISSOCIATION



5

## ELECTROLYTES

When a solute dissolves and ions are produced, the solution conducts electricity.

This type of solution is called an electrolyte.


All soluble ionic compounds dissolved in water are electrolytes!

## NON-ELECTROLYTES

A non-electrolyte may dissolve in water, but it does not dissociate into ions when it does so.

Examples of this are:

- Low soluble ionic compounds
- Aqueous covalent compounds


7

## ELECTROLYTES



## THINK ABOUT IT...



Which of the following
soluble salts, when dissolved in water do you think would produce the model on the left? Why?

- Magnesium chloride
- Potassium chloride
- Potassium sulphate


## DISSOCIATION EQUATIONS

Write the dissociation equation for the dissolving of sodium carbonate in water.

Soluble Ionic Compounds
Compounds containing

| $\mathrm{NO}_{3}{ }^{-}$ | None |
| :--- | :--- |
| $\mathrm{CH}_{3} \mathrm{COO}^{-}$ | None |
| $\mathrm{Cl}^{-}$ | Compounds of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, and $\mathrm{Pb}^{2+}$ |
| $\mathrm{Br}^{-}$ | Compounds of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, and $\mathrm{Pb}^{2+}$ <br> $\mathrm{I}^{-}$ |
| $\mathrm{SO}_{4}{ }^{2-}$ | Compounds of $\mathrm{Ag}^{+}, \mathrm{Hg}_{2}{ }^{2+}$, and $\mathrm{Pb}^{2+}$ |
|  | ampounds of $\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Hg}_{2}{ }^{2+}$, |

## DISSOCIATION EQUATIONS

Write the dissociation equation for the dissolving of aluminum sulphate in water.

Soluble Ionic Compounds<br>Important Exceptions<br>Compounds containing

## THINK ABOUT IT...

If you had a solution with 1.5 moles of $\mathrm{CaCl}_{2}$ dissolved in it, how many moles of each ion would be present in the solution?

# 2. PRECIPITATION RXNS 

UNIT 1 AQUEOUS CHEMICAL REACTIONS

CH4OS MR. WIEBE

1

## REVIEW

Write the dissociation equations for the following solutions and draw a diagram to model the process:

1. Lead(II) nitrate is dissolved in water.
2. Potassium chloride is dissolved in water.

## DOUBLE REPLACEMENT REACTIONS FORM PRECIPITATES

When two soluble ionic compounds are mixed together in solution, the ions of the compounds exchange places to form two new compounds.

$$
A X+B Y \rightarrow A Y+B X
$$

One of the compounds formed is usually either:

1. a precipitate (an insoluble solid), or
2. an insoluble gas that bubbles out of solution.

## OBSERVE A PRECIPITATION REACTION...

1. Place your Petri dish on a white piece of paper and fill it about half full of distilled water.
2. Have one person place a small amount of lead(II) nitrate to one side of the dish. At the same time, have your partner add about the same amount of potassium chloride to the other side of the Petri dish.
3. Observe. Be patient! Write down what you see.

## WRITING NET IONIC EQUATIONS

Lead(II) nitrate + potassium chloride $\rightarrow$

1. Balanced Formula Equation (Grade 10 style!)
2. Complete ionic equation (show soluble salts as aqueous ions)
3. Net ionic equation (eliminate the spectator ions)

# 3. REACTIONS OF ACIDS \& BASES 

## UNIT 1 REACTIONS IN AQUEOUS SOLUTIONS

CH 40 S
MR. WIEBE

## PROPERTIES OF ACIDS

1. Acids contain $\mathrm{H}^{+}$
2. Acids have a pH lower than 7
3. Acids taste sour
4. Acids affect indicators (Blue litmus turns red)
5. Acids react with active metals, producing $\mathrm{H}_{2}$
6. Acids react with carbonates, producing $\mathrm{CO}_{2}$

7. Acids neutralize bases

## PROPERTIES OF BASES

1. Many bases contain $\mathrm{OH}^{-}$
2. Bases have a pH greater than 7
3. Bases taste bitter
4. Bases effect indicators (Red litmus turns blue)
5. Solutions of bases feel slippery
6. Bases neutralize acids

## THE pH SCALE

Acids have a $\mathrm{pH}<7$

Bases have a pH > 7

$$
\mathrm{pH}=7=\text { Neutral }
$$



## INDICATORS

Indicators are chemicals that change their colour as pH changes.

There are many different types of chemical indicators. We will learn more about them in a later unit.

You may be familiar with litmus paper.


## REACTIONS OF ACIDS

1. Acids react with active metals to form salts and hydrogen gas.

A piece of magnesium is placed in a test tube of hydrochloric acid.

## REACTIONS OF ACIDS

2. Acids react with carbonate salts to produce carbon dioxide gas.
Vinegar (acetic acid) is mixed with washing soda (sodium carbonate).

## REACTIONS OF ACIDS

Acids react with bases to produce a soluble ionic salt and water.

This is called a neutralization reaction.
Milk of Magnesia contains magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, which neutralizes stomach acid, HCl .

## NEUTRALIZATION DEEP DIVE

Adding just a few drops of hydrochloric acid would not be sufficient to dissolve all the $\mathrm{Mg}(\mathrm{OH})_{2}(s)$. Why not?



# 4. MOLARITY \& TITRATION 

UNIT 1 REACTIONS IN AQUEOUS SOLUTIONS
CH4OS
MR. WIEBE

1

## REVIEW - MOLARITY

-Two solutions can contain the same solute and solvent but be quite different because the proportions of those compounds are different.
-Molarity is one way to measure the concentration of a solution.

$$
\text { Molarity }(M)=\frac{\text { moles of solute }}{\text { volume of solution in liters }}
$$

## REVIEW - CONCENTRATED VS. DILUTE ACIDS



## REVIEW - CALCULATING MOLARITY

What is the molarity of a solution made by dissolving 23.4 g of sodium hydroxide in enough water to form 125 mL of solution? What is the molarity of each of the ions present in the solution?

REVIEW - USING MOLARITY IN STOICHIOMETRY


## STOICHIOMETRY OF NEUTRALIZATION REACTIONS

Calculate the volume of 0.250 M strontium hydroxide solution (base) required to react fully neutralize 125.0 mL of 0.150 M hydrochloric acid ( HCl ).

## STOICHIOMETRY OF NEUTRALIZATION REACTIONS

125 mL of sodium hydroxide base is mixed with 175 ml of 0.200 M sulfuric acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$. The resulting solution is completely neutral. What is the concentration of the sodium hydroxide?

## TITRATION



Titration is a technique in which one can calculate the unknown concentration of a solution from the known concentration of another solution.

## TITRATION - DEEP DIVE

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

-In every neutralization reaction, the $\mathrm{H}^{+}$from the acid reacts in a $1: 1$ ratio with the $\mathrm{OH}^{-}$from the base.
-If you add 5 moles of $\mathrm{H}^{+}$from an acid, it will react with 5 moles of $\mathrm{OH}^{-}$from a base.
-If you can determine the moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$in your known, you can calculate the moles of $\mathrm{H}^{+} / \mathrm{OH}^{-}$present in the unknown.

9

## TITRATION DATA ANALYSIS

| Table 1: The Titration of 10.0 mL of $\mathrm{HCl}(\mathrm{aq})$ with $\mathbf{0 . 1 0 0 ~ M ~ N a O H}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| Titration Trial \# | Final Volume NaOH (mL) | Initial Volume NaOH (mL) | Volume NaOH Used <br> $(\mathrm{mL})$ |
| 1 | 12.2 | 0.0 |  |
| 2 | 23.7 | 12.2 |  |
| 3 | 35.1 | 23.7 |  |
| Average Volume of NaOH Used to Neutralize the $\mathrm{HCl}(\mathrm{mL}):$ |  |  |  |

## AT LEAST TWO TRIALS WITHIN 0.20 mL OF EACH OTHER

IGNORE OTHERS

## SUMMARY PROBLEM

One commercial method of peeling potatoes is to soak them in sodium hydroxide solution for a short time, then spray off the loosened peel. The [ NaOH ] is normally in the range of 3 M to 6 M . To ensure the range is consistant, periodic titrations are done on the lye. In one titration, it was found that 45.7 mL of $0.500 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ was needed to neutralize a 20.0 mL sample of NaOH . What was the $[\mathrm{NaOH}]$ ?

## 5. REDOX REACTIONS

UNIT 1 REACTIONS IN AQUEOUS SOLUTIONS
CH4OS
MR. WIEBE

## REDOX = REDUCTION + $\underline{\text { OXIDATION }}$

## The historic definitions:

REDUCTION: reducing the volume of a naturally occuring metal ore (ie. $\mathrm{CuO}_{(s)}$ ) into its components and extracting the metal (ie. $\mathrm{Cu}_{(s)}$ )


## REDOX = REDUCTION + $\underline{\text { OXIDATION }}$

The historic definitions:
OXIDATION: The reaction of a metal with oxygen in the air, resulting in corrosion.


These definitions are still somewhat true, but not nearly detailed enough for us!

3

OBSERVE...
A piece of copper wire, $\mathrm{Cu}(\mathrm{s})$, is placed in an aqueous solution of silver nitrate, $\mathrm{AgNO}_{3}(\mathrm{aq})$.

Observations:

## WHAT'S GOING ON?

Write the balanced chemical equation for this reaction:

Write the complete ionic equation for this reaction:

Write the net ionic equation for this reaction:

## WHAT'S GOING ON?



Losing electrons $=$ oxidation


Gaining electrons $=$ reduction

## REDOX...


$\underline{\text { Losing }} \underline{\text { Electrons }} \underline{\mathbf{O}}$ xidation
Gaining $\underline{\text { E lectrons }} \underline{\text { Reduction }}$

$\underline{\text { Oxidation Is }} \underline{\text { Losing }}$
Reduction Is Gaining

## PREDICTING REDOX REACTIONS

- An element can only steal electrons from another element if it is "strong" enough.
- The ranking of a chemicals ability to steal electrons is called an Activity Series.
- The lower the element, the better it is at stealing electrons. The higher the element, the better it is at losing electrons.



## PREDICT A REDOX REACTION

Use the Activity Series to predict the spontaneity of the following reaction.

$\mathrm{Al}_{(s)}+\ldots \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{aq})}$

| Metal | Oxidation $\mathrm{Reaction}^{\prime}$ |
| :--- | :--- |
| Lithium | $\mathrm{Li}(s) \longrightarrow \mathrm{Li}^{+}(a q)+\mathrm{e}^{-}$ |
| Potassium | $\mathrm{K}(s) \longrightarrow \mathrm{K}^{+}(a q)+\mathrm{e}^{-}$ |
| Barium | $\mathrm{Ba}(s) \longrightarrow \mathrm{Ba}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Calcium | $\mathrm{Ca}(s) \longrightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Sodium | $\mathrm{Na}(s) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{e}^{-}$ |
| Magnesium | $\mathrm{Mg}(s) \longrightarrow \mathrm{Mg}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Aluminum | $\mathrm{Al}(s) \longrightarrow \mathrm{Al}^{3+}(a q)+3 \mathrm{e}^{-}$ |
| Manganese | $\mathrm{Mn}(s) \longrightarrow \mathrm{Mn}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Zinc | $\mathrm{Zn}(s) \longrightarrow \mathrm{Zn}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Chromium | $\mathrm{Cr}(s) \longrightarrow \mathrm{Cr}^{3+}(a q)+3 \mathrm{e}^{-}$ |
| Iron | $\mathrm{Fe}(s) \longrightarrow \mathrm{Fe}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Cobalt | $\mathrm{Co}(s) \longrightarrow \mathrm{Co}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Nickel | $\mathrm{Ni}(s) \longrightarrow \mathrm{Ni}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Tin | $\mathrm{Sn}(s) \longrightarrow \mathrm{Sn}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Lead | $\mathrm{Pb}(s) \longrightarrow \mathrm{Pb}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Hydrogen | $\mathrm{H}(\mathrm{s}) \longrightarrow 2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-}$ |
| Copper | $\mathrm{Cu}(s) \longrightarrow \mathrm{Cu}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Silver | $\mathrm{Ag}(s) \longrightarrow \mathrm{Ag}^{+}(a q)+\mathrm{e}^{-}$ |
| Mercury | $\mathrm{Hg}(l) \longrightarrow \mathrm{Hg}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Platinum | $\mathrm{Pt}(s) \longrightarrow \mathrm{Pt}^{2+}(a q)+2 \mathrm{e}^{-}$ |
| Gold | $\mathrm{Au}(s) \longrightarrow \mathrm{Au}^{3+}(a q)+3 \mathrm{e}^{-}$ |

9

## PREDICT A REDOX REACTION

Write the balanced chemical equation, the complete ionic equation, and the net ionic equation for the reaction:
$\underset{\mathrm{Al}_{(s)}}{+} \underset{\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{aq})} \rightarrow}{ } \rightarrow$

# THE THERMITE REACTION <br> $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \rightarrow$ 

CAUTION: This reaction will reach a temperature of about $3000^{\circ} \mathrm{C}$ !

Identify the substance being reduced. Prove it!

Identify the substance being oxidized. Prove it!

## 6. OXIDATION NUMBERS

UNIT 1 REACTIONS IN AQUEOUS SOLUTIONS
CH 40 S
MR. WIEBE

## OXIDATION NUMBERS

When polyatomic ions and covalent compounds are involved in a redox reaction, it can be difficult to tell if electrons are being lost or gained.

$$
\mathrm{CrO}_{4}{ }^{2-} \quad \rightarrow \quad \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}
$$

$\square$ Are any electrons being lost or gained here?
$\square$ Which element(s) is being oxidized/reduced?
Oxidation numbers are assigned numbers that are used to determine if oxidation or reduction has occurred.

## RULES FOR ASSIGNING NUMBERS

1. All elements are zero

OXIDATION \#
$\mathrm{N}_{2}$
Pb
Na $\mathrm{O}_{2}$

RULES FOR ASSIGNING NUMBERS
2. Monatomic lons are their charge OXIDATION \#
$\mathrm{Na}^{+}$
Br
$\mathrm{MgSO}_{4}$
$\mathrm{Al}_{2} \mathrm{~S}_{3}$

## RULES FOR ASSIGNING NUMBERS

3. O in a compound is -2

## OXIDATION \#

$\mathrm{Na}_{2} \mathrm{O}$
$\mathrm{CO}_{2}$
$\mathrm{O}_{2}$
$\mathrm{CH}_{3} \mathrm{COOH}$

## RULES FOR ASSIGNING NUMBERS

4. $\mathbf{H}$ in a compound is $\mathbf{+ 1}$

OXIDATION \#
$\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
$\underline{H}_{2}$
$\mathrm{HNO}_{3}$

## RULES FOR ASSIGNING NUMBERS

5. The sum of the oxidation numbers must equal the charge
oxidation \#s

$$
\mathrm{SO}_{4}{ }^{2-}
$$

## Total charge $\longrightarrow$

EXAMPLE
oxidation \#s
$\mathrm{PO}_{4}{ }^{3-}$
Total charge $\longrightarrow$

EXAMPLE
oxidation \#s $\longrightarrow$

$$
\underline{S i}_{2} \mathrm{O}_{3}{ }^{2-}
$$

Total charge $\longrightarrow$

TRY A FEW...
$\underline{\mathrm{C}}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad \mathrm{H}_{3} \mathrm{PO}_{3} \quad \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$

## USING OXIDATION NUMBERS

If the oxidation number of the central atom
increases going from left to right, oxidation has occurred.
$\mathrm{ClO}_{2}{ }^{-}$
$\rightarrow$
$\mathrm{ClO}_{4}^{-}$

## USING OXIDATION NUMBERS

If the oxidation number of the central atom decreases going from left to right, reduction has occurred.
$\mathrm{NO}_{3}{ }^{-}$
$\rightarrow$
$\mathrm{HNO}_{2}$

## BACK TO THE START...

$\mathrm{CrO}_{4}{ }^{2-}$
$\rightarrow$
$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$

Is the chromium in the above equation undergoing oxidation or reduction?

## NOT ALL REACTIONS ARE REDOX

Reactions in which there has been no change in oxidation number are not redox rxns.

Examples:

Precipitation reactions are NOT redox!

Neutralization reactions are NOT redox!

## OXIDIZING \& REDUCING AGENTS

## Agents always

 HELP ANOTHER PARTY.

## Eg) Real Estate Agents HELP OTHERS find real estate.

## Oxidizing Agents cause oxidation...

...by undergoing reduction.
They gain electrons, causing the other reactant to lose electrons.

## Reducing Agents cause reduction...

...by undergoing oxidation.
They lose electrons, causing the other reactant to gain electrons.

## THE CHEMICAL BATTLEFIELD <br> $\mathrm{MnO}_{4}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{OH}(\mathrm{I}) \rightarrow \mathrm{Mn}^{2+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CH}_{2} \mathrm{O}(\mathrm{aq})$

1. Is this reaction a redox reaction or not? Prove it using oxidation numbers.
2. Identify the reactant being oxidized and the reactant being reduced.
3. Identify the oxidizing agent and the reducing agent.

# 7. BALANCING REDOX REACTIONS 

UNIT 1 REACTIONS IN AQUEOUS SOLUTIONS
CH4OS
MR. WIEBE

## BALANCING REDOX EQUATIONS

-Redox reactions are often quite complicated and difficult to balance because you must account for all the electrons as well as the atoms!
-The method we will use to balance redox reactions is called the Half Reaction Method.

## THE HALF-REACTION METHOD:

1. Write the unbalanced net equation.
2. Split the equation into it's LEO and GER $1 / 2$ reactions.
3. Balance all elements except " H " and " O ".
4. Balance the " O 's" by adding water, $\mathrm{H}_{2} \mathrm{O}$.
5. Balance the " H 's" by adding hydrogen ions, $\mathrm{H}^{+}$.
6. Balance the electric charge by adding electrons, $e^{-}$.
7. Multiply the two equations by appropriate coefficients to make the \# of electrons in the equations equal.
8. Re-combine the two equations, canceling if needed.

## BALANCING NEUTRAL REDOX REACTIONS

Redox reactions that don't involve oxygen and hydrogen can be balanced fairly simply...

$$
\left.\mathrm{Cu}^{+}(\mathrm{aq})+\mathrm{Fe}(\mathrm{~s}) \rightarrow \mathrm{Fe}{ }^{3+}(\mathrm{aq})+\mathrm{Cu}\right)
$$

## BALANCING ACIDIC REDOX REACTIONS

Redox reactions that do involve oxygen and hydrogen are a different beast...

$$
\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow \mathrm{MnO}_{2}+\mathrm{CO}_{3}{ }^{2-} \quad \text { (ACIDIC) }
$$

## WHAT IF IT'S BASIC?

Notice that the method has assumed the solution was acidic - we added $\mathrm{H}^{+}$to balance the equation. The $\left[\mathrm{H}^{+}\right]$in a basic solution is very small. The $\left[\mathrm{OH}^{-}\right]$is much greater.

For this reason, we will add enough $\mathrm{OH}^{-}$ions to both sides of the equation to neutralize the $\mathrm{H}^{+}$in the overall reaction.

The hydrogen and hydroxide ions will combine to make water, and you may have to do some canceling before you're done.

## BALANCING A BASIC REACTION

Balance the reaction as if acidic, then tweak it like this...

$$
2 \mathrm{MnO}_{4}^{-}+3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MnO}_{2}+6 \mathrm{CO}_{3}^{2-}+4 \mathrm{H}^{+}
$$

```
7
```


## ALWAYS CHECK YOUR ANSWER!

Count charges on both sides. If they are equal, you are golden!

$$
2 \mathrm{MnO}_{4}^{-}+3 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+4 \mathrm{OH}^{-} \rightarrow 2 \mathrm{MnO}_{2}+6 \mathrm{CO}_{3}^{2-}+2 \mathrm{H}_{2} \mathrm{O}
$$

## Solubility of Common Compounds in Water

The term soluble here means $>0.1 \mathrm{~mol} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$.

Periodic Chart of Ions

PERIODIC TABLE OF THE ELEMENTS

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 1 \\ \mathbf{H} \\ \text { Hydrogen } \\ 1.0 \\ \hline \end{gathered}$ |  |  |  |  |  |  | $— \text { Ator }$ | Numbe |  |  |  |  |  |  |  |  | $\begin{gathered} 2 \\ \mathrm{He} \\ \text { Hefium } \\ 4.0 \\ \hline \end{gathered}$ |
| $\begin{gathered} 3 \\ \mathrm{Li} \\ \text { Lithium } \\ 6.9 \\ \hline \end{gathered}$ | 4 Be Beyllum 9.0 |  |  |  |  |  | $\begin{array}{r} \text { _ Symb } \\ \text { - Name } \\ \text { Atom } \end{array}$ |  |  |  |  | 5 B Boron 10.8 | 6 Carbon 12.0 | 7 $\mathbf{N}$ Nitrogen 14.0 | $\begin{gathered} 8 \\ 0 \\ \text { Oxyen } \\ 16.0 \end{gathered}$ | 9 $\mathbf{F}$ Fluorine 19.0 | 10 <br> Ne <br> Neon <br> 20.2 |
| $\begin{aligned} & \hline 11 \\ & \mathrm{Na} \\ & \text { Sodium } \\ & 23.0 \end{aligned}$ | $\begin{gathered} 12 \\ \mathbf{M g} \\ \text { Magnesium } \\ 24.3 \end{gathered}$ |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} 13 \\ \mathbf{A l} \\ \text { Aluminum } \\ 27.0 \end{gathered}$ | $\begin{gathered} 14 \\ \hline \mathrm{Si} \\ \text { Silicon } \\ 28.1 \end{gathered}$ | 15 $\mathbf{P}$ Phosphous 31.0 | $\begin{gathered} \hline 16 \\ \mathbf{S} \\ \text { Sulphur } \\ 32.1 \end{gathered}$ | $\begin{gathered} 17 \\ \mathrm{Cl} \\ \mathrm{Chlorine} \\ 35.5 \end{gathered}$ | $\begin{aligned} & \hline 18 \\ & \mathrm{Ar} \\ & \text { Agon } \\ & 39.9 \end{aligned}$ |
| $\begin{gathered} 19 \\ \mathbf{K} \\ \text { Potassium } \\ 39.1 \end{gathered}$ | $\begin{gathered} \hline 20 \\ \mathrm{Ca} \\ \text { Calcium } \\ 40.1 \end{gathered}$ | $\begin{gathered} 21 \\ \text { Sc } \\ \text { Scandum } \\ 45.0 \end{gathered}$ | $\begin{gathered} \hline 22 \\ \mathrm{Ti} \\ \text { Thanium } \\ 47.9 \end{gathered}$ | $\begin{gathered} 23 \\ \mathbf{V} \\ \text { Vanadium } \\ 50.9 \end{gathered}$ | $\begin{gathered} 24 \\ \mathrm{Cr} \\ \text { Chromium } \\ 52.0 \end{gathered}$ | $\begin{gathered} \hline 25 \\ \text { Mn } \\ \text { Marganese } \\ 54.9 \end{gathered}$ | $\begin{gathered} 26 \\ \mathrm{Fe} \\ \text { fron } \\ \text { fon } \\ 55.8 \end{gathered}$ | $\begin{aligned} & 27 \\ & \text { Co } \\ & \text { Cobat } \\ & 58.9 \end{aligned}$ | $\begin{gathered} 28 \\ \mathrm{Ni} \\ \text { Nickel } \\ 58.7 \end{gathered}$ | $\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { Copper } \\ 63.5 \end{gathered}$ | $\begin{gathered} 30 \\ \text { Zn } \\ \text { Znin } \\ 65.4 \end{gathered}$ | $\begin{gathered} 31 \\ \text { Ga } \\ \text { Gallium } \\ 69.7 \end{gathered}$ | $\begin{gathered} 32 \\ \text { Ge } \\ \text { Germanium } \\ 72.6 \end{gathered}$ | $\begin{gathered} \hline 33 \\ \text { As } \\ \text { Asenic } \\ 74.9 \end{gathered}$ | $\begin{gathered} 34 \\ \text { Se } \\ \text { Selenium } \\ 79.0 \end{gathered}$ | $\begin{gathered} 35 \\ \mathrm{Br} \\ \text { Bromine } \\ 79.9 \end{gathered}$ | $\begin{gathered} \hline 36 \\ \mathrm{Kr} \\ \text { Knypton } \\ 83.8 \end{gathered}$ |
| $\begin{gathered} \hline 37 \\ \text { Rb } \\ \text { Rubidum } \\ 85.5 \end{gathered}$ | $\begin{gathered} 38 \\ \mathrm{Sr} \\ \text { Stronium } \\ 87.6 \end{gathered}$ | $\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Yytrium } \\ 88.9 \end{gathered}$ | $\begin{gathered} 40 \\ \text { Zr } \\ \text { Zrconium } \\ 91.2 \end{gathered}$ | $\begin{gathered} \hline 41 \\ \mathrm{Nb} \\ \text { Niobium } \\ 92.9 \end{gathered}$ | $\begin{gathered} 42 \\ \text { Mo } \\ \text { Molydodenum } \\ 95.9 \end{gathered}$ | $\begin{gathered} \hline 43 \\ \mathrm{Tc} \\ \text { Technetum } \\ (98) \end{gathered}$ | 44 Ru <br> Ruthenium 101.1 | $\begin{gathered} \hline 45 \\ \text { Rh } \\ \text { Phodium } \\ 102.9 \end{gathered}$ | $\begin{gathered} \hline 46 \\ \text { Pd } \\ \text { Paladum } \\ 106.4 \end{gathered}$ | $\begin{gathered} 47 \\ \mathbf{A g} \\ \text { siver } \\ 107.9 \end{gathered}$ | $\begin{gathered} \hline 48 \\ \text { Cd } \\ \text { Cadmum } \\ 112.4 \end{gathered}$ | $\begin{gathered} 49 \\ \text { In } \\ \text { Indium } \\ 114.8 \end{gathered}$ | $\begin{gathered} 50 \\ S n \\ \operatorname{Tin} \\ 118.7 \end{gathered}$ | $51$ Sb <br> Antimony <br> 121.8 | $\begin{gathered} 52 \\ \mathrm{Te} \\ \text { Tellurum } \\ 127.6 \end{gathered}$ | $\begin{gathered} \hline 53 \\ \text { I } \\ \text { lodine } \\ 126.9 \end{gathered}$ | $\begin{gathered} \hline 54 \\ \text { Xe } \\ \text { Xenon } \\ 131.3 \end{gathered}$ |
| $\begin{gathered} 55 \\ \text { Cs } \\ \text { Cesium } \\ 132.9 \end{gathered}$ | 56 Ba Barium 137.3 | 57 La Lanthanum 138.9 | $\begin{gathered} \hline 72 \\ \mathbf{H f} \\ \text { Hafnum } \\ 178.5 \end{gathered}$ | $\begin{gathered} \hline 73 \\ \text { Ta } \\ \text { Tantaum } \\ 180.9 \end{gathered}$ | $\begin{gathered} \hline 74 \\ \text { W } \\ \text { Tungsten } \\ 183.8 \end{gathered}$ | 75 <br> Re <br> Rhenium <br> 186.2 | $\begin{gathered} \hline 76 \\ \text { Os } \\ \text { Osmium } \\ 190.2 \end{gathered}$ | $\begin{gathered} \hline 77 \\ \mathbf{~ I r} \\ \text { Indium } \\ 192.2 \end{gathered}$ | $\begin{gathered} 78 \\ \mathbf{P t} \\ \text { Platinum } \\ 195.1 \end{gathered}$ | $\begin{gathered} \hline 79 \\ \mathrm{Au} \\ \text { Gold } \\ 197.0 \end{gathered}$ | $\begin{gathered} 80 \\ \mathrm{Hg} \\ \text { Mercury } \\ 200.6 \end{gathered}$ | $\begin{gathered} 81 \\ \mathrm{TI} \\ \text { Thallum } \\ 204.4 \end{gathered}$ | $\begin{gathered} \hline 82 \\ \mathrm{~Pb} \\ \text { Lead } \\ 207.2 \end{gathered}$ | $\begin{gathered} \hline 83 \\ \mathrm{Bi} \\ \text { Bisnuth } \\ 209.0 \end{gathered}$ | $\begin{gathered} \hline 84 \\ \text { Po } \\ \text { Poobnum } \\ (209) \end{gathered}$ | $\begin{gathered} \hline 85 \\ \mathbf{A t} \\ \text { Astatine } \\ \text { (210) } \end{gathered}$ | $\begin{gathered} \hline 86 \\ \text { Rn } \\ \text { Radon } \\ (222) \end{gathered}$ |
| $\begin{gathered} 87 \\ \text { Fr } \\ \text { Francium } \\ (223) \end{gathered}$ | $\begin{gathered} \hline 88 \\ \text { Ra } \\ \text { Radium } \\ (226) \end{gathered}$ | 89 <br> Ac <br> Actinium <br> (227) | $\begin{array}{\|c\|} \hline 104 \\ \text { Rf } \\ \text { Rutheroforium } \\ (261) \end{array}$ | $\begin{gathered} \hline 105 \\ \text { Db } \\ \text { Dubnium } \\ (262) \end{gathered}$ | $\begin{gathered} 106 \\ \mathrm{Sg} \\ \text { Seaborgum } \\ (263) \end{gathered}$ | $107$ <br> Bh <br> Bohrium <br> (262) | $\begin{gathered} 108 \\ \text { Hs } \\ \text { Hassium } \\ (265) \end{gathered}$ | $\begin{gathered} \hline 109 \\ \mathrm{Mt} \\ \text { Meiterium } \\ (266) \end{gathered}$ |  |  |  |  |  |  |  |  |  |


| Based on mass of $C^{12}$ at 12.00. | $\begin{gathered} 58 \\ \text { Ce } \\ \text { Cefium } \\ 140.1 \end{gathered}$ |  | 60 Nd Neodymium 144.2 | 61 Pm Promethium <br> (145) | 62 <br> Sm <br> Samarium <br> 150.4 | 63 <br> Eu <br> Europium <br> 152.0 |  | 65 <br> Tb <br> Terbium <br> 158.9 |  | $\begin{gathered} 67 \\ \text { Ho } \\ \text { Holmium } \\ 164.9 \end{gathered}$ | $\begin{gathered} 68 \\ \text { Er } \\ \text { Ebium } \\ 167.3 \end{gathered}$ | 69 <br> Tm <br> Thulium <br> 168.9 | $\begin{gathered} \hline 70 \\ \text { Yb } \\ \text { Ytebtium } \\ 173.0 \end{gathered}$ | $\begin{gathered} \hline 71 \\ \mathrm{Lu} \\ \text { Lutefum } \\ 175.0 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Values in parentheses are the masses of the most stable or best known isotopes for elements which do not occur naturally. | $\begin{gathered} 90 \\ \text { Th } \\ \text { Thorium } \\ 232.0 \end{gathered}$ |  | $\begin{gathered} 92 \\ \mathbf{U} \\ \text { Uranium } \\ 238.0 \end{gathered}$ |  | 94 Pu <br> Plutonium <br> (244) | 95 Am <br> Americium <br> (243) | 96 <br> Cm <br> Curum <br> (247) | $\begin{gathered} 97 \\ \text { Bk } \\ \text { Berkelium } \\ (247) \end{gathered}$ |  |  | $100$ <br> Fm Ferrium <br> (257) | 101 Md <br> Mendebvium <br> (258) | 102 <br> No <br> Nobefium <br> (259) | $\begin{gathered} 103 \\ \text { Lr } \\ \text { Lawencenm } \\ (262) \end{gathered}$ |

