The Alchemist's cookbook

UNIT 2 - CHEMICAL REACTIONS

NAME:

It is expected that the activities in this book are completed as they are performed in class. This book will be collected at the end of the unit and a mark will be given.

LET'S GET STARTED!

By the end of this unit, should be able to:
\checkmark Write balanced formula equations for a variety of types of chemical reactions, including predicting the products.
\checkmark Interpret a balanced equation in terms of mole/volume of gas ratios.
\checkmark Solve stoichiometric problems involving moles and mass, given the reactants and products in a balanced chemical reaction.
\checkmark Use the molar volume of a gas as a conversion factor in stoichiometric problems
\checkmark Determine \% yield of a chemical reaction from the actual and theoretical yield.
\checkmark Identify the limiting reactant and calculate the mass of a product, given the reaction equation and reactant data.
\checkmark Perform an experiment to determine the percent yield of a chemical reaction

5-steps to success: USE PENCIL WHEN BALANCING CHEMICAL EQUATIONS

1. Underline the name of each substance in the chemical equation
2. Draw ionic pictures for each substance and write the proper formula under each substance's name.
3. Add symbols + and \rightarrow where appropriate to link the substances involved in the reaction.
4. Place underlines in front of all chemical formulas to act as placeholders for coefficients (e.g. \qquad $\mathrm{KCl})$
5. Balance the equation using coefficients so that all atoms are accounted for.

TRY SOME:

1. Aluminum reacts with hydrogen chloride to produce hydrogen gas and aluminum chloride

Word Equation:			
Pictures:			
Formula Equation:			

2. Sodium carbonate reacts with zinc chloride to form sodium chloride and zinc carbonate. Note: there are four separate salts here -you should draw a picture for EACH of the four salts!

$\ldots \underline{N a}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\ldots \quad \rightarrow \quad+\quad+\ldots$
3. Dissolved silver nitrate reacts with dissolved magnesium chromate to form silver chromate and magnesium nitrate.
\qquad
4. Aluminum bromide reacts with potassium hydroxide to form aluminum hydroxide and potassium bromide.
5. Iron(II) chloride reacts with sodium phosphate to form sodium chloride and iron(II) phosphate.
$4 \mid P$ age

ACTIVITY \#2 - CHEMICAL EQUATION PRACTICE

For each of the following, balance the equation by putting coefficients in front of each reactant and/or product, and circle the correct reaction type.

Types	Pattern	Example
Double Replacement	$\mathrm{XY}+\mathrm{AB} \rightarrow \mathrm{XB}+\mathrm{AY}$	$2 \mathrm{AgNO}_{3}+\mathrm{K}_{2} \mathrm{CrO}_{4} \rightarrow \mathrm{Ag}_{2} \mathrm{CrO}_{4}+2 \mathrm{KNO}_{3}$
Single Replacement	$\mathrm{XY}+\mathrm{A} \rightarrow \mathrm{AY}+\mathrm{X}$	$\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{H}_{2}+\mathrm{ZnCl}_{2}$
Synthesis	$\mathrm{X}+\mathrm{Y} \rightarrow \mathrm{XY}$	$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Decomposition	$\mathrm{AB} \rightarrow \mathrm{A}+\mathrm{B}$	$\mathrm{H}_{2} \mathrm{CO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
Combustion	$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

	Chemical Equation	Type of Reaction
(a)	$\ldots \mathrm{Al}(\mathrm{s})+\ldots \mathrm{Br}_{2}(\ell) \rightarrow \ldots \mathrm{AlBr}_{3}(\mathrm{~s})$	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR}\|\mathrm{SR}\| \mathrm{S}$
(b)	$\ldots \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}(\ell)+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\ell)$	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR} \mid$ SR \mid S
(c)	$\ldots \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}(\mathrm{g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\ell)$	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR}\|\mathrm{SR}\| \mathrm{S}$
(d)	$\ldots \mathrm{Ca}(\mathrm{s})+\ldots \mathrm{HCl}(\mathrm{aq}) \rightarrow \ldots \mathrm{CaCl}_{2}(\mathrm{aq})+\ldots \mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR}\|\mathrm{SR}\| \mathrm{S}$
(e)	$\ldots \mathrm{CaBr}_{2}(\mathrm{aq})+\ldots \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow \ldots \mathrm{CaCO}_{3}(\mathrm{~s})+\ldots \mathrm{NaBr}(\mathrm{aq})$	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR}\|\mathrm{SR}\| \mathrm{S}$
(f)	$\ldots\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightarrow \ldots \mathrm{NH}_{3}(\mathrm{~g})+\ldots \mathrm{CO}_{2}(\mathrm{~g})+\ldots \mathrm{H}_{2} \mathrm{O}(\ell)$	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR}\|\mathrm{SR}\| \mathrm{S}$
(g)	$\ldots \mathrm{Cu}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \ldots \mathrm{Cu}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$	$C\|D\| D R\|S R\| S$

ACTIVITY \#3 - BE A CHEMICAL REACTION PSYCHIC!

The accompanying YouTube video was created by a friend of mine and demonstrates 16 chemical reactions. For this activity, you'll look at the first $\mathbf{1 3}$ reactions. For each reaction, you will need to classify the reaction type (synthesis, decomposition, single replacement, double replacement, or hydrocarbon combustion), write the word equation, the balanced formula equation, and provided evidence of a chemical reaction. Be sure to listen to the narration as it provides hints as to what the products of the reaction might be!

	Chemical Equation	Type of Reaction	
(1)	Yellow sulfur (octasulfur) combined with copper metal	C \mid D \mid DR \| SR \| S	
	Octasulfur + copper \rightarrow		
(2)	Solutions of copper(II) nitrate and sodium phosphate are mixed	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR}\|\mathrm{SR}\| \mathrm{S}$	
	Sodium phosphate + copper(II) nitrate \rightarrow		
(3)	Bromine (dissolved in water) is mixed with a solution of sodium chloride	C \mid D \mid DR \| SR	S
	Bromine + sodium chloride \rightarrow		
(4)	Silver nitrate and sodium phosphate solutions are mixed together	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR} \mid$ SR \| S	
	Silver nitrate + sodium phosphate \rightarrow		

	Chemical Equation	Type of Reaction
(5)	Magnesium metal reacts with the oxygen in the air through combustion	C \mid D \mid DR \| SR \| S
	Magnesium + oxygen \rightarrow	
(6)	A piece of copper wire is placed in a solution of silver nitrate	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR} \mid$ SR \| S
	Copper + silver nitrate \rightarrow	
(7)	Iron(III) nitrate solution is mixed with sodium hydroxide solution	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR}\|\mathrm{SR}\| \mathrm{S}$
	Iron(III) nitrate + sodium hydroxide \rightarrow	
(8)	Cyclohexane ($\mathrm{C}_{6} \mathrm{H}_{6}$) reacts with the oxygen in the air through combustion	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR}\|\mathrm{SR}\| \mathrm{S}$
	Cyclohexane + oxygen \rightarrow	
(9)	A piece of potassium metal is placed in water	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR} \mid$ SR \mid S
	Potassium + water \rightarrow	
		$7 \mid \mathrm{Page}$

	Chemical Equation	Type of Reaction	
(10)	Ammonium carbonate is heated and decomposed	C \mid D \mid DR \| SR	S
	Ammonium carbonate \rightarrow		
(11)	Solutions of lead(II) nitrate and potassium iodide are mixed together	$C\|D\| D R\|S R\| S$	
	Lead(II) nitrate + potassium iodide \rightarrow		
(12)	Candle wax ($\mathrm{C}_{30} \mathrm{H}_{62}$) reacts with oxygen in the air through combustion	$\mathrm{C}\|\mathrm{D}\| \mathrm{DR}\|\mathrm{SR}\| \mathrm{S}$	
	Candle wax + oxygen \rightarrow		
(13)	A piece of zinc metal is placed in a solution of sulfuric acid (hydrogen sulfate)	C \mid D \mid DR \| SR	S
	Zinc + hydrogen sulfate \rightarrow		

$8 \mid \mathrm{Page}$

ACTIVITY \#4 - STOICHIOMETRY INTRO PROBLEMS

1.	Name the following substances: KClO_{3} :	KCl :	O_{2} :
2.	Find the molar mass of each substance:		
	KClO_{3} :	KCl :	O_{2} :
3.	Given 0.58 mol sample of $\mathrm{O}_{2}(\mathrm{~g})$ at STP.		
(a)	Find the mass of this sample.		
(b)	Find the volume of this sample.		
(c)	Find the number of molecules in this sample.		

4. Identify the type of reaction and balance the equation.
$\ldots \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow \ldots \mathrm{KCl}(\mathrm{s})+\ldots \mathrm{O}_{2}(\mathrm{~g})$
5. How many moles of KClO_{3} are required to produce $0.58 \mathrm{~mol} \mathrm{O}_{2}$?

ACTIVITY \#5 - I'M A ROCKET MAN!

PART 1: PLANNING OUR FUEL MIXTURE

The first thing to determine is the appropriate ratio of hydrogen and oxygen to use in your rocket. You need an explosive mixture to launch your rocket. A mixture too rich in hydrogen will burn quietly like a Bunsen burner instead of igniting explosively. A mixture too rich in oxygen will produce suboptimal thrust. A proper stoichiometric mixture will produce maximum power for your rocket.

The unbalanced equation for the propulsion reaction is as follows:

$$
\ldots \mathrm{H}_{2}(\mathrm{~g})+\ldots \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \ldots \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

1. Balance the propulsion equation above to determine the correct mole ratio of hydrogen to oxygen.
2. Use a 1-liter graduated cylinder to accurately measure the total volume of your bottle. Record this value below.
3. Using the mole ratio of H_{2} to O_{2} that you discovered from your balanced equation, determine the gas volume ratio of H_{2} to O_{2}. Remember, 1 mole of any gas $=22.4 \mathrm{~L}$ of that gas at standard temperature and pressure (STP).
$\frac{2 \mathrm{molH}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=\frac{? \mathrm{~L} \mathrm{H}_{2}}{? \mathrm{~L} \mathrm{O}_{2}}$
4. Based on this volume ratio, what fraction of your bottle or jug will need to be hydrogen gas and what fraction will need to be oxygen gas?
5. Use a graduated cylinder to accurately mark off the fraction above on your bottle. Use a Sharpie or permanent marker for this. How many litres of each gas do you need?

OXYGEN gas can be generated from the decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$. The unbalanced equation is:

$$
\ldots \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \ldots \mathrm{H}_{2} \mathrm{O}+\ldots \mathrm{O}_{2}
$$

This reaction is extremely slow at room temperature unless a catalyst is added. You will use the salt potassium iodide (KI) as a catalyst to hasten this reaction. Note: When running the actual reaction, a small scoop of the catalyst (about 0.7 grams) will be "packaged" in weighing paper and then added to the hydrogen peroxide solution. You will place a stopper on the reaction flask and then shake to allow the catalyst to come out of its package. This method should enable you to collect $\sim 100 \%$ of the gases created in this reaction.
6. Balance the equation shown above and use stoichiometry to calculate the MASS of hydrogen peroxide needed to generate the volume of O_{2} you need for your rocket.
7. The hydrogen peroxide that you will use to generate oxygen gas will be provided as an aqueous solution of hydrogen peroxide. The solution contains $\mathbf{1 0 \%}$ hydrogen peroxide by mass (the other 90% being water). Use your number from \#6 to calculate how many grams of this SOLUTION you will need to use
8. Assuming that the 10% peroxide solution has a density of $\mathbf{1 . 0 3} \mathbf{g} / \mathbf{m l}$, convert the grams you calculated in \#6 into milliliters of solution.

PART 3: PRODUCING HYDROGEN GAS

Hydrogen can be generated in many ways. You will use the reaction shown here:

$$
\ldots \mathrm{Ca}(\mathrm{~s})+\ldots \ldots \mathrm{HOH}(\mathrm{aq}) \rightarrow \ldots \mathrm{H}_{2}(\mathrm{~g})+\ldots \mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq})
$$

9. Balance the equation shown above.
10. Use stoichiometric calculations to determine the MASS of calcium metal needed to produce the volume of hydrogen gas you need for your rocket.

ACTIVITY \#6 - MORE STOICH PROBLEMS!

1. Nitrogen gas reacts with hydrogen gas, forming ammonia gas.
(a) Write the balanced equation for the reaction.
(b) Find the molar masses of the substances in the reaction.

$\mathrm{N}_{2}:$	$\mathrm{H}_{2}:$

$\mathrm{NH}_{3}:$
(c) Find the moles of $\mathrm{NH}_{3}(\mathrm{~g})$ formed when 5.00 moles of $\mathrm{H}_{2}(\mathrm{~g})$ reacts.

GIVEN: WORK:
$5.0 \mathrm{~mol} \mathrm{H}_{2}$
DESIRED
? $\mathrm{mol} \mathrm{NH}_{3}$
(d) Find the moles of $\mathrm{H}_{2}(\mathrm{~g})$ required when 3.5 grams of $\mathrm{N}_{2}(\mathrm{~g})$ reacts.

GIVEN:	WORK:
DESIRED:	

ANSWER: $-\quad-\quad-$
(e) Find the grams of $\mathrm{H}_{2}(\mathrm{~g})$ needed to form 21.1 grams of $\mathrm{NH}_{3}(\mathrm{~g})$.

GIVEN:
DESIRED:
(f) Find the liters of $\mathrm{NH}_{3}(\mathrm{~g})$ produced at STP when 9.62 grams of $\mathrm{N}_{2}(\mathrm{~g})$ is used. given: work:

DESIRED:
2. Solid potassium chlorate decomposes to form solid potassium chloride and oxygen gas.
(a) Write the balanced equation for the reaction.

3.	Zinc metal is placed in a solution of hydrochloric acid (hydrogen chloride). A reaction occurs.	
(a)	Write the balanced equation for the reaction.	
(b)	Find the mass of $\mathrm{Zn}(\mathrm{s})$ required to produce 12.6 L of $\mathrm{H}_{2}(\mathrm{~g})$ at STP. given: work:	ANSWER:
(c)	Calculate the moles of $\mathrm{HCl}(\mathrm{aq})$ required to produce 12.6 L of $\mathrm{H}_{2}(\mathrm{~g})$ at STP. GIVEN: work:	ANSWER:
4.	A solution of lead(II) acetate reacts with a solution of hydrochloric acid (hydrogen chloride).	
(a)	Write the balanced equation for the reaction.	
(b)	Find the molar masses of the substances in the reaction. $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$: HCl : PbCl_{2} $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}:$	
(c)	Find the mass of lead(II) acetate required to react to form 94.5 g of lead(II) chloride. given: work:	ANSWER:
(d)	Calculate the molecules of acetic acid produced when 94.5 g of lead(II) chloride is formed. GIVEN: work:	ANSWER:

ACTIVITY \#7 - HI YO SILVER AWAY!

When working with chemical reactions, it is important not only to be able to predict the identity of the chemicals produced, but also to be able to predict the quantities of those chemicals. Fo the latter, we use stoichiometry, the act of performing calculations of chemical reactions. Every year throughout the world, the production of major chemical is measured in the millions of tons, so mistakes involving calculations of such large amounts can be very costly. Even small calculation errors involving rare chemicals can cost a company a lot of money! In this experiment, you will react an excess amount of copper metal with a solution of silver nitrate. You will predict the mass of product that should be produced using stoichiometry. You will then collect the product using a technique called filtration and compare the mass of your product to the predicted
 mass.

Pre-Lab:

1. What type of reaction are we going to perform?
2. Write the word equation for this reaction?
3. Write the balanced formula equation for this reaction.
4. If 5.0 grams of copper was used up in this reaction, what mass of silver would be produced?

Procedure:

Day 1:

1. Obtain a clean, dry test tube and put your name on it with a piece of masking tape.
2. Obtain a piece of copper wire. Rub the wire with a piece of steel wool to remove the oxide coating and expose the copper atoms.
3. Wrap the wire around your pencil to form a coil. Stretch the coil so that it is about the length of your test tube.
4. Measure the mass of the coil and record it in the data table.
5. Fashion a small hook on one end of the coil. Place the coil inside your test tube and hook the end on the edge of the test tube.
6. Fill your test tube about $3 / 4$ full of silver nitrate solution. If you get any solution on your hands, wash them immediately. Record your initial observations below.

Observations:

7. Place a small piece of cling film over the top of your tube to prevent evaporation. Place your test tube in the rack provided and let it sit undisturbed until next class.

Day 2:

8. Obtain your test tube from the test tube rack. Be careful not to disturb it too much. Make some more observations in the space below.

Observations:

9. Shake the crystals off the coil and allow them to settle to the bottom of the tube.
10. Lift the coil out of the solution and use your wash bottle to rinse any remaining crystals off into the tube. When you are satisfied you have removed as many crystals as you can, place the coil on a piece of paper towel and allow it to dry.
11. Once the crystals have all settled, decant the liquid layer of your test tube into a beaker. Stop decanting before any solid crystals escape the tube.
12. Wash your crystals by filling your test tube $3 / 4$ full of distilled water. Allow the crystals to settle again for a couple of minutes.
13. Decant the liquid layer a second time into the beaker.
14. Obtain a piece of filter paper and fold it as instructed. Measure the mass of the filter paper and record it in the data table.
15. Assemble the filtration apparatus. Filter all of the crystals from the test tube into the filter paper. Use the wash bottle to rinse all the crystals from the test tube onto the filter paper.
16. Wash the crystals one more time by spraying them with the wash bottle.
17. Once all of the liquid has left the filter paper, remove the paper and place it in a piece of paper towel. Put your name on the paper towel and put it aside to dry until next class.
18. Weigh your dried copper coil and record its mass in the data table.

Day 3:
19. Obtain your filter paper and weigh it. Record its mass in the data table.
20. Open the filter paper and observe the crystals. Record your observations below.

Observations:

RESULTS

Copper Data	
Mass of Copper Wire Before (g)	
Mass of Copper Wire After (g)	

Silver Data	
Mass of Filter Paper (g)	
Mass of Filter Paper and Silver Crystals (g)	

ANALYSIS OF RESULTS

1. Write the balanced chemical equation for the chemical reaction that occurred in your test tube.
2. Calculate the mass of copper that reacted.
3. Calculate the theoretical mass of silver crystals that should have been produced.
4. Calculate the actual mass of silver crystals recovered from the reaction.
5. Determine the percent yield of your reaction.
6. Determine the ratio of $\frac{\text { actual moles of silver produced }}{\text { actual moles of copper reacted }}$. Communicate the answer as a fraction. What should this ratio be theoretically?
7. List as many errors that occurred in the lab that WERE BEYOND YOUR CONTROL but would have influenced your results. Pay attention to whether the error would have resulted in you obtaining > 100% yield or < 100% yield.

POST-LAB QUESTIONS

1. Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$, is a valuable compound in the synthesis of new organic compounds. One of several ways this born compound can be made is by the reaction

$$
\begin{array}{lccccc}
& 2 \mathrm{NaBH}_{4}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{~s}) \rightarrow \mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+2 \mathrm{NaI}(\mathrm{~s})+\mathrm{H}_{2}(\mathrm{~g}) \\
\text { [Molar masses: } & 37.84 & 253.8 & 27.67 & 149.9 & 2.02 \text {] }
\end{array}
$$

Suppose you use 1.203 g of NaBH_{4} with an excess of iodine and obtain 0.295 g of $\mathrm{B}_{2} \mathrm{H}_{6}$. What is the percent yield of $\mathrm{B}_{2} \mathrm{H}_{6}$?
2. Disulfur dichloride, which has a revolting smell, can be prepared by directly combining S_{8} and Cl_{2}, but it can also be made by the following reaction:

	$3 \mathrm{SCl}_{2}(\mathrm{l})+4 \mathrm{NaF}(\mathrm{s}) \rightarrow \mathrm{SF}_{4}(\mathrm{~g})+\mathrm{S}_{2} \mathrm{Cl}_{2}(\mathrm{l})+4 \mathrm{NaCl}(\mathrm{s})$				
[Molar masses:	103.0	41.99	108.1	135.0	58.46

Assume you begin with 5.23 g of SCl_{2} and excess NaF . What is the theoretical yield of $\mathrm{S}_{2} \mathrm{Cl}_{2}$? If only 1.19 g of $\mathrm{S}_{2} \mathrm{Cl}_{2}$ is obtained, what is the percent yield of the compound?

Why?

If a factory runs out of tires while manufacturing cars, production stops. No more cars can be fully built without ordering more tires. A similar thing happens in a chemical reaction. If there are fixed amounts of reactants to work with in a chemical reaction, one of the reactants may be used up first. This prevents the production of more products. In this activity, you will look at several situations where the process or reaction is stopped because one of the required components has been used up.

Model 1 - Assembling a Race Car

1. How many of each part are needed to construct 1 complete race car?
Body (B)
Cylinder (Cy)
Engine (E)
Tire (Tr)
2. How many of each part would be needed to construct 3 complete race cars? Show your work.

Body (B) Cylinder (Cy) Engine (E) Tire (Tr)
3. Assuming that you have 15 cylinders and an unlimited supply of the remaining parts:
a. How many complete race cars can you make? Show your work.
b. How many of each remaining part would be needed to make this number of cars? Show your work.

Model 2 - Manufacturing Race Cars

4. Count the number of each Race Car Part present in Container A of Model 2.

Body (B)

$$
\text { Cylinder (Cy) } \quad \text { Engine (E) }
$$

Tire (Tr)
5. Complete Model 2 by drawing the maximum number of cars that can be made from the parts in Container A. Show any excess parts remaining also.
6. A student says "I can see that we have three car bodies in Container A, so we should be able to build three complete race cars." Explain why this student is incorrect in this case.
7. Suppose you have a very large number (dozens or hundreds) of tires and bodies, but you only have 5 engines and 12 cylinders.
a. How many complete cars can you build? Show your work.
b. Which part (engines or cylinders) limits the number of cars that you can make?
8. Fill in the table below with the maximum number of complete race cars that can be built from each container of parts (A-E), and indicate which part limits the number of cars that can be built. Divide the work evenly among group members. Space is provided below the table for each group member to show their work. Have each group member describe to the group how they determined the maximum number of complete cars for their container. Container A from Model 2 is already completed as an example.
$1 \mathrm{~B}+3 \mathrm{Cy}+4 \mathrm{Tr}+1 \mathrm{E}=1 \mathrm{car}$

Container	Bodies	Cylinders	Tires	Engines	Max. Number of Completed Cars	Limiting Part
A	3	10	9	2	2	Engines
B	50	12	50	5		
C	16	16	16	16		
D	4	9	16	6		
E	20	36	40	24		

9. The Zippy Race Car Company builds toy race cars by the thousands. They do not count individual car parts. Instead they measure their parts in "oodles" (a large number of things).
a. Assuming the inventory in their warehouse below, how many race cars could the Zippy Race Car Company build? Show your work.

Body (B)	Cylinder (Cy)	Engine (E)	Tire (Tr)
4 oodles	5 oodles	8 oodles	8 oodles

b. Explain why it is not necessary to know the number of parts in an "oodle" to solve the problem in part a.
10. Look back at the answers to Questions 8 and 9 . Is the component with the smallest number of parts always the one that limits production? Explain your group's reasoning.

ACTIVITY \#9 - ICE ICE BABY!

An ICE table is an organizational tool used in chemistry to keep track of chemical quantities before, during, and after a reaction.

Consider the following reaction:

$$
2 \mathrm{~N}_{2} \mathrm{O}+\mathrm{O}_{2} \rightarrow 4 \mathrm{NO}
$$

If we started with 1.0 mole of each reactant, which one would run out

first? How much of the excess reactant would remain? How much product would be produced? Try the following!

Step 1: Insert initial (I) molar quantities into the table. If you don't have molar quantities, you know what to do... when in doubt, mole it out!

	$2 \mathrm{~N}_{2} \mathrm{O}+$		O_{2}
Initial	1.0	1.0	4 NO
Change			
End			

Step 2: Pick the reactant with the biggest balancing number and assume it runs out first.

	$2 \mathrm{~N}_{2} \mathrm{O}+\mathrm{O}_{2}$		\rightarrow
4 NO			
Initial	1.0	1.0	0
Change			
End	0		

Step 3: Determine the change that occurs for this to happen.

	$2 \mathrm{~N}_{2} \mathrm{O}+$		O_{2}
\rightarrow	4 NO		
Initial	1.0	1.0	0
Change	-1.0		
End	0		

Step 4: MOST IMPORTANT STEP! Use the mole ratios from the balanced equation to predict the rest of the changes that will occur. Remember...reactants decrease, products increase. If the change for a reactant is more than the initial amount, go back to step 2 and choose another reactant.

	$2 \mathrm{~N}_{2} \mathrm{O}$		$+\mathrm{O}_{2}$
	\rightarrow	4 NO	
Initial	1.0	1.0	0
Change	-1.0	$\longrightarrow-0.5$	$\longrightarrow+2.0$
End	0		

Step 5: Fill in the rest. The "End" row is you final molar amounts in the reaction. Convert to another unit if required.

	$2 \mathrm{~N}_{2} \mathrm{O}+\mathrm{O}_{2}$		\rightarrow
4 NO			
Initial	1.0	1.0	0
Change	-1.0	-0.5	+2.0
End	0	0.5	2.0

Got it? Ok...you try a few...
1)

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})
$$

Initial	2.0	2.0	0
Change			
Ending			

$$
2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{~g})
$$

Initial	5.0	2.0	0
Change			
Ending			

3)

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Initial	2.0	2.0	0
Change			
Ending			

4)

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Initial	1.0	2.0	0
Change			
Ending			

1. The reaction of methane and water is one way to prepare hydrogen:

\[

\]

If you begin with 995 g of CH_{4} and 2510 g of water, what is the maximum possible yield of H_{2} ?
2. Disulfur dichloride, $\mathrm{S}_{2} \mathrm{Cl}_{2}$, is used to vulcanize rubber. It can be made by treating molten sulfur with gaseous chlorine:

\[

\]

 of $\mathrm{S}_{2} \mathrm{Cl}_{2}$ (in grams) can be produced? What mass of the excess reactant remains when the limiting reactant is consumed?
3. Aspirin $\left(\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}\right)$ is produced by the reaction of salicylic acid $\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right)$ and acetic anhydride $\left(\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}\right)$ (page 163).

	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{~s})+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}(\mathrm{l}) \rightarrow$	$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}(\mathrm{~s})+\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}(\mathrm{aq})$	
[Molar masses:	138.1	102.1	180.1

If you mix 100. g of each of the reactants, what is the maximum mass of aspirin that can be obtained?

$24 \mid \mathrm{Page}$

TOPIC 1: BALANCING EOUATIONS
Balance the following formula equations and identify the type of chemical reaction it is (synthesis, decomposition, single replacement, double replacement, combustion, or "other"):

$\ldots \mathrm{H}_{2}+\ldots \mathrm{Br}_{2} \rightarrow$ _ HBr	TYPE:	
$\ldots \mathrm{LaCl}_{3}+\ldots \mathrm{Na}_{2} \mathrm{CO}_{3} \rightarrow \ldots \mathrm{La}_{2}\left(\mathrm{CO}_{3}\right)_{3}+\ldots \mathrm{NaCl}$		Qripry
$\ldots \mathrm{C}_{4} \mathrm{H}_{10}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$		
$\ldots \mathrm{Fe}_{2} \mathrm{O}_{3}+\ldots \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \ldots \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\ldots \mathrm{H}_{2} \mathrm{O}$		
$\ldots \mathrm{Al}+\ldots \mathrm{Fe}_{3} \mathrm{O}_{4} \rightarrow \ldots \mathrm{Al}_{2} \mathrm{O}_{3}+\ldots \mathrm{Fe}$		
$\ldots \mathrm{Ca}(\mathrm{OH})_{2}+\ldots \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow \ldots \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$		
C- $\mathrm{H}_{6} \mathrm{O}_{2}+\ldots \mathrm{O}_{2} \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$		
$\ldots \mathrm{NO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow$ _ $\mathrm{NO}+\ldots \mathrm{HNO}_{3}$		

Write the balanced formula equations for each reaction. Use the 4 -step method used in class.
a) A piece of magnesium ribbon is reacted with oxygen in a crucible.
b) A piece of magnesium ribbon is placed in hydrochloric acid (HCl). Bubbles form.
c) Natural gas $\left(\mathrm{CH}_{4}\right)$ captured in bubbles is combusted.
d) Solutions of lead(II) nitrate and potassium iodide are mixed and a bright yellow colour emerges.

TOPIC 3: BASIC STOICHIOMETRY

Solve the following general stoichiometry problems. Show work beautifully.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Calculate the mass of ammonia, NH_{3}, formed when $45.0 \mathrm{~L}_{2}(\mathrm{~g})$ reacts with excess $\mathrm{H}_{2}(\mathrm{~g})$ at STP.

What mass of H_{2} is needed to completely react with 10.0 grams of N_{2} ?

Dinitrogen monoxide $\left(\mathrm{N}_{2} \mathrm{O}\right)$ - known also as nitrous oxide or "laughing gas" - was one of the earliest anesthetics used in surgery. It has regained its popularity in dentistry. It is made from the decomposition of ammonium nitrate, as shown below.

$$
\underline{\mathbf{1}} \mathrm{NH}_{4} \mathrm{NO}_{3} \rightarrow \underline{\mathbf{1}} \mathrm{~N}_{2} \mathrm{O}+\underline{\mathbf{2}} \mathrm{H}_{2} \mathrm{O}
$$

a) How many moles of water are created when 5 moles of ammonium nitrate is decomposed?
b) How many grams of ammonium nitrate are required to produce 500.0 g of laughing gas?
c) How many litres of laughing gas can be created with 50.0 grams of ammonium nitrate?

Solve the following stoichiometry problem using an ICE table. Show work beautifully.

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

What mass of NH_{3} is formed when $135.00 \mathrm{~g} \mathrm{~N}_{2}$ reacts with $32.00 \mathrm{~g} \mathrm{H}_{2}$?
15.5 g of aluminum is reacted with 46.7 g of chlorine to form aluminum chloride, as shown by the equation below:

```
2Al + 3Cl2 }\quad->\quad2\mp@subsup{\textrm{AlCl}}{3}{
```

a) Identify the limiting and the excess reactant.
b) What mass of excess reactant remains at the end of the reaction?
c) What mass of aluminum chloride is produced?

TOPIC 7: PERCENT YIELD

Solve the following problem:

Hydrogen gas was generated according to the equation $\mathrm{Zn}+2 \mathrm{HCl} \rightarrow \mathrm{H}_{2}+\mathrm{ZnCl}_{2}$
When 25.00 grams of Zn metal reacted with excess $\mathrm{HCl}, 7.50 \mathrm{~L} \mathrm{H}_{2}(\mathrm{~g})$ was collected at STP.
The actual yield of $\mathrm{H}_{2}(\mathrm{~g})$ for this reaction is:

The theoretical yield of $\mathrm{H}_{2}(\mathrm{~g})$ for this reaction is: (show work)

The percentage yield for this reaction is

In the lab, you collected silver created from the reaction of copper and silver nitrate. The following data was collected:

$$
\mathrm{Cu}+2 \mathrm{AgNO}_{3} \rightarrow 2 \mathrm{Ag}+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}
$$

Mass of copper wire before reaction	1.45 g
Mass of copper wire after reaction	1.23 g
Mass of filter paper	0.34 g
Mass of filter paper and silver produced	0.61 g

Calculate the theoretical yield, the actual yield, and the percent yield of your reaction.

TOPIC 9: MORE LAB WORK!

A 4 litre milk jug "rocket" is filled with hydrogen gas and oxygen gas in the correct stoichiometric ratio as communicated in the balanced formula equation below:

$$
2 \mathrm{H}_{2}+1 \mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

With gases at STP, the mole ratio from the formula equation is the same as the correct volume ratio for the reaction. As such, the volume ratio required for this reaction is 2 litres H_{2} for every 1 litre O_{2}.
a) How many litres of each gas are required to fill your 4 litre milk jug with the correct ratio of gases?
b) How many grams of calcium metal will be required to produce the required volume of hydrogen gas, according to the reaction:

$$
\ldots \mathrm{Ca}+\ldots \mathrm{H}_{2} \mathrm{O} \rightarrow \ldots \mathrm{Ca}(\mathrm{OH})_{2}+\ldots \mathrm{H}_{2}
$$

Fundamental Constants

Name	Symbol	Value
Speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Magnitude of charge of electron	e	$1.602 \times 10^{-19} \mathrm{C}$
Planck's constant	h	$6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Boltzmann constant	k	$1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Avogadro's number	N_{A}	$6.022 \times 10^{23} \mathrm{particles} / \mathrm{mol}$
Gas constant, SI	R	$8.314 \mathrm{~L} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{K}$
Gas constant	R	$0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
Mass of electron	m_{e}	$9.109 \times 10^{-31} \mathrm{~kg}$
Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Mass of neutron	m_{n}	$1.675 \times 10^{-27 \mathrm{~kg}}$
Faraday constant	\mathfrak{F} or F	$96485 \mathrm{C} / \mathrm{mol} \mathrm{e}$

International System (SI) Units

Physical Quantity	Name of Unit	Symbol
	base units	
Length (I)	Meter	m
Mass (m)	Kilogram	kg
Time (t)	Second	s
Temperature (T)	Kelvin	K
Electric Current (I)	Ampere	A
Luminous Intensity (φ)	Candela	cd
Amount of Substance	Mole	mol
	derived units	
Area (A)	square meter	m^{2}
Volume (V)	cubic meter	m^{3}
Frequency (v)	Hertz	$\mathrm{Hz}\left[\mathrm{s}^{-1}\right]$
Speed, velocity (v)	meter per second	m / s
Force (F)	Newton	$\mathrm{N}\left[\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}\right]$
Pressure (P)	Pascal	$\mathrm{Pa}\left[\mathrm{N} / \mathrm{m}^{2}\right]$

Common SI Prefixes

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10^{12}	tera	T	10^{-2}	centi	c
10^{9}	giga	G	10^{-3}	milli	m
10^{6}	mega	M	10^{-6}	micro	μ
10^{3}	kilo	k	10^{-9}	nano	n
			10^{-12}	pico	p
			10^{-15}	femto	f

The Periodic Table of the Elements 18

	塊울				部め ¢ ¢	
＾	䘡のレ					
$\stackrel{\square}{\bullet}$	厛 0 O					唇는
$\stackrel{\square}{\square}$	唇へて			颜の号号		
\pm	部めU			¢品ら㐌		
$\stackrel{\square}{\square}$			唇-	镸年		

騂婁号先	
	短め 㞤弇

