CHEMISTRY 40S

The Alchemist's cookbook

UNIT 2 - RATES OF REACTION

荡

NAME:

It is expected that the activities in this book are completed as they are performed in class. This book will be collected at the end of the unit and a mark will be given.

LET'S GET STARTED!

By the end of this unit, you should be able to:
\checkmark Define rate of reaction as a change in quantity per unit of time. In chemistry, the standard unit of rate is molarity/second ($\mathrm{mol} / \mathrm{L} . \mathrm{s}$)
\checkmark Calculate the rate of appearance of products and disappearance of reactants in mol/L.s from data obtained from experiment.
\checkmark Calculate the rate at which a product is formed from the rate at which a reactant is used up using stoichiometric ratios.
\checkmark Plot molarity vs. time on a grid and use the resulting graph to determine the average rate and instantaneous rate of reaction from the slope of the lines.
\checkmark Identify 4 variables that influence the rate of a reaction and explain why they do using collision theory.
\checkmark Draw and analyze a potential energy diagram of an exothermic and an endothermic reaction.
\checkmark Formulate a rate law for a reaction from rate data obtained in the lab.
\checkmark Explain the concept of a reaction mechanism and evaluate possible mechanisms for a given reaction.

This unit will take approximately 13 lessons to complete and will comprise 10% of your mark in this class.

Background:

Chemists frequently need to know the rate at which a chemical reaction is creating product and the rate at which it is using up reactant in order to monitor how the reaction is proceeding. This information can be obtained in a variety of ways. For instance, if a gas is produced in a closed container, then continuous monitoring of gas pressure indicates the rate. If a colour is produced or used up, monitoring of the colour intensity with a device called a spectrophotometer indicates the rate. If a gas is produced and allowed to escape the system, the decrease in mass over time indicates the rate. In this lab, we will use yet another method of monitoring the rate of a reaction involving gases is to measure the volume of gas produced by the displacement of water in a eudiometer (gas measuring tube).

Household bleach is an aqueous solution of sodium hypochlorite (NaClO). Under normal conditions the hypochlorite ion $\left(\mathrm{ClO}^{-}\right)$slowly breaks down into chloride ions $\left(\mathrm{Cl}^{-}\right)$and oxygen gas $\left(\mathrm{O}_{2}\right)$ according to the following reaction:

$$
2 \mathrm{ClO}^{-}(\mathrm{aq}) \rightarrow 2 \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})
$$

The reaction can be speeded up with the addition of something called a catalyst (we will learn more about this later in the unit). In this activity, we will use a catalyst (cobalt(III) oxide) to speed up the reaction above and measure the volume of oxygen gas produced. We will then use this information to calculate the average rate of the reaction.

Procedure:

1. Refer to the diagram to set up your gas collection apparatus.
2. Fill the eudiometer with water and invert it into the trough. Hold it in the vertical position with a clamp and ring stand.
3. Place the hose from the gas collection tube and stopper into the neck of the eudiometer.

4. Measure 15 mL of bleach solution into a 25 mL graduated cylinder and pour it into your Erlenmeyer flask.
5. Measure 5 mL of $0.10 \mathrm{~mol} / \mathrm{L}$ cobalt(III) nitrate solution into a 10 mL graduated cylinder.
6. Pour the cobalt nitrate solution into the Erlenmeyer flask and IMMEDIATELY place the stopper and tube in the mouth of the flask. Start your stopwatch. Swirl the flask gently, continually, and at a consistent rate.
7. Record the total volume of oxygen gas collected every 30 seconds until a volume of 50 mL has been obtained. Also record the total time it took to obtain 50 mL of oxygen.

Experimental Results:

Time (s)	Volume of $\mathrm{O}_{2}(\mathrm{~g})$	Time (s)	Volume of $\mathrm{O}_{2}(\mathrm{~g})$
30		210	
60		240	
90		270	
120		300	
150		330	
180			

Total Time to Collect 50 mL of $\mathrm{O}_{2}(\mathrm{~g})$:

Analysis of Results

1. Plot a graph of your results on the sheet of graph paper on the following page. Plot volume of oxygen produced vs time elapsed.
2. Calculate the overall rate of production of oxygen by dividing the total volume of gas produced by the total time take to produce that amount. Identify and use the correct units for your rates.
3. Bleach is made by the action of chlorine gas on sodium hydroxide:

$$
\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

However, if an acid is added to the bleach, the process is reversed:

$$
\mathrm{Cl}^{-}(\mathrm{aq})+\mathrm{ClO}^{-}(\mathrm{aq})+2 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Why should you never mix bleach with any cleaner or household product that is acidic?

ACTIVITY \#2 - CALCULATING RATES FROM DATA

At $40^{\circ} \mathrm{C}$, hydrogen chloride gas, $\mathrm{HCl}(\mathrm{g})$, will form from the reaction of gaseous hydrogen and chlorine according to the following balanced chemical equation:

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{~g})
$$

The following table contains measurements made by a chemist during this reaction.

	Concentration of Chemicals (mol/L)		
Time (s)	$\mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{Cl}_{2}(\mathrm{~g})$	$\mathrm{HCl}(\mathrm{g})$
0	1.000	1.000	0.000
2.16	0.500	0.500	1.000
4.32	0.250	0.250	1.500

Calculate the following average rate changes for each reactant and product in mol/L's. Use the formula for calculating rate to determine the first column. Use mole ratios to determine the other two columns.

Time (s)	Rate of H_{2} Disappearance $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{s})$	Rate of Cl_{2} Disappearance $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{s})$	Rate of HCl Appearance $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{s})$
$0-2.16$			
$2.16-4.32$			

1. What do you notice happens to the average rate disappearance/appearance of each of the substances over time? Why do you think this happens?
2. What relationship do you notice between the rate of disappearance of the reactants at any one time, and the rate of appearance of the product during that same time?

ACTIVITY \#3 - CALCULATING RATES FROM GRAPHS

A chemist measured the concentration of two gases at various time intervals during the chemical reaction $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$. Her data is contained in the table below.

Rate Data for the Reaction $\mathbf{2 N O}_{2}(\mathbf{g}) \rightarrow \mathbf{N}_{2} \mathbf{O}_{4}(\mathbf{g})$		
Time (s)	$\left[\mathrm{NO}_{2}\right]$	$\left[\mathbf{N}_{2} \mathrm{O}_{4}\right]$
0	1.0	0
50	0.79	0.11
100	0.65	0.18
150	0.55	0.23
200	0.48	0.26
250	0.43	0.29
300	0.38	0.31
350	0.34	0.33
400	0.31	0.35

1. Construct a graph to represent this data. Plot gas concentration in mol/L on the y-axis and time in seconds on the x - axis (square brackets in chemistry refer to the molarity of that solution in $\mathrm{mol} / \mathrm{L}$). Use your graph to answer the rest of the questions.
2. Determine the instantaneous reaction rate in $\mathrm{mol} / \mathrm{Ls}$ for each gas at 50 s . Show your tangent lines on the graph.
3. Determine the instantaneous reaction rate in $\mathrm{mol} / \mathrm{Ls}$ for each gas at 200 s . Show your tangent lines on the graph.
4. Using your answers from the previous questions, complete the following statements:
"As the reactants get used up, the rate of the reaction \qquad because
\qquad
\qquad
\qquad
\qquad
\qquad .$"$
"The rate at which the reactants are consumed in this reaction are \qquad the rate at which products are produced. This is because
\qquad
\qquad
\qquad
\qquad
\qquad

5. Draw the energy diagram showing the energy changes that occur during a successful collision of the exothermic reaction:

$$
\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}+250 \mathrm{KJ}
$$

The energy of the reactants $=400 \mathrm{KJ}$
The activation energy of the forward reaction $=200 \mathrm{KJ}$
2. Draw the energy diagram showing the energy changes that occur during a successful collision of the endothermic reaction:

$$
\mathrm{A}+\mathrm{B}+200 \mathrm{KJ} \rightarrow \mathrm{C}
$$

The energy of the reactants $=200 \mathrm{KJ}$
The activation energy in the forward direction $=250 \mathrm{KJ}$

3. Write the following reaction in $\underline{\Delta \mathrm{H} \text { notation. }}$
a) $\mathrm{A}+\mathrm{B}+200 \mathrm{~kJ} \rightarrow \mathrm{C}$
b) $2 \mathrm{AlBr}_{3}+3 \mathrm{BaF}_{2} \rightarrow 2 \mathrm{AlF}_{3}+3 \mathrm{BaBr}_{2}+276 \mathrm{~kJ}$
4. Write the following reaction in Standard Notation.
a) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$

$$
\Delta \mathrm{H}=-250 \mathrm{~kJ}
$$

b) $2 \mathrm{NI}_{3}+3 \mathrm{BaCl}_{2} \rightarrow 2 \mathrm{NCl}_{3}+3 \mathrm{BaI}_{2} \quad \Delta \mathrm{H}=175 \mathrm{~kJ}$

Use the following energy diagram to answer the rest of this page:
5. How much potential energy is stored in the bonds of the reactant molecules?
6. How much activation energy is required to allow the reactant molecules to collide effectively?
7. How much potential energy is stored in the bonds

Progress of the reaction
8. Does the potential energy stored in the bonds of the chemical molecules involved in this reaction increase or decrease as the reaction progresses?
9. If potential energy is gained in a reaction, where does it come from? If potential energy is lost in a reaction, where does it go?
10. What is the change in enthalpy (H) of this reaction?
11. Will the surroundings become hotter or colder as this reaction progresses? Why?
12. Is this reaction endothermic or exothermic?
13. Draw the energy diagram that represents the following set of criteria:

Potential energy reactants $=250 \mathrm{~kJ}$	Potential energy activated complex $=$ 350 kJ	Potential energy products $=300 \mathrm{~kJ}$

a) What happens to the amount of energy stored in the chemical bonds (chemical potential energy) of the molecules as the reaction progresses?
b) What happens to the amount of heat associated with this reaction (kinetic energy) as the reaction progresses?
c) Is the reaction exothermic or endothermic? How do you know?
d) Will the surroundings become hotter or colder as this reaction progresses? Why?
e) What is the value of $\Delta \mathrm{H}$?
14. Draw the energy diagram that represents the following set of criteria:

Potential energy reactants $=350 \mathrm{~kJ}$	Activation Energy $=100 \mathrm{~kJ}$	Potential energy products $=250 \mathrm{~kJ}$

a) What happens to the amount of energy stored in the chemical bonds (chemical potential energy) of the molecules as the reaction progresses?
b) What happens to the amount of heat associated with this reaction (kinetic energy) as the reaction progresses?
c) Is the reaction exothermic or endothermic? How do you know?
d) Will the surroundings become hotter or colder as this reaction progresses? Why?
e) What is the value of $\Delta \mathrm{H}$?
15. Draw the energy diagram that represents the following set of criteria:

Potential energy reactants $=200 \mathrm{~kJ}$	Potential energy activated complex $=400 \mathrm{~kJ}$	Potential energy products $=150 \mathrm{~kJ}$

a) What happens to the amount of energy stored in the chemical bonds (chemical potential energy) of the molecules as the reaction progresses?
b) What happens to the amount of heat associated with this reaction (kinetic energy) as the reaction progresses?
c) Is the reaction exothermic or endothermic? How do you know?
d) Will the surroundings become hotter or colder as this reaction progresses? Why?
e) What is the value of $\Delta \mathrm{H}$?

Overview:

In this lab, you will react a sample of zinc with hydrochloric acid to generate hydrogen gas. You will use a balloon to capture the hydrogen that is generated. At the end of class, we will ignite these balloons to create some nice explosions. The central concept you will be investigating in this lab is: What factors determine the SPEED of a reaction (the reaction rate)?

Pre-Lab:

Use the amazing cartoon below to think about the chemistry that is going to occur in your reactions. Use this to guide the decisions you make and the conclusions you draw from your results.

1. Balance the equations below for the reactions you will perform. In each of these reactions, use oxidation numbers to identify the substance being oxidized, the substance being reduced, and the spectator ions.

$$
\ldots \mathrm{Zn}(\mathrm{~s})+\ldots \mathrm{HCl}(\mathrm{aq}) \quad \rightarrow \ldots \mathrm{ZnCl}_{2}(\mathrm{aq})+\ldots \mathrm{H}_{2}(\mathrm{~g})
$$

2. The concepts listed below all affect the rate at which the reaction depicted above will occur. For each concept, jot down an idea for how/why this factor will affect the rate of the reaction. Remember collision theory...number of effective collisions determines rate. Effective collisions rely on collision orientation and activation energy.
a. The speed at which $\mathrm{H}^{+}(\mathrm{aq})$ swim through the aqueous medium.
b. The number of $\mathrm{Zn}(\mathrm{s})$ atoms exposed to the acid
c. The number of $\mathrm{H}^{+}(\mathrm{aq})$ available to react within the aqueous solution.

Procedure: (Put on eye protection and gloves immediately!)

1. Obtain metals. Weigh out appropriate mass zinc metal from the designated supply beakers on the buffet table.

Mass of $\mathrm{Zn}=$ \qquad (should be between 1.80 g and 3.10 g)
2. Take a beaker of acid from the buffet table and pour $\mathbf{2 0 . 0} \mathbf{~ m L}$ of $\mathbf{6}$-molar HCl into your two Erlenmeyer reaction flasks.
3. Drop your metal sample into the flask and immediately place a balloon atop the flask to capture the gas produced.
4. Using your pre-lab as a guide, INVENT AN EXPERIMENT with your partner for how to increase the zinc's initial reaction rate. When you think you have a good idea on how to speed up the zinc's reaction, CONSULT WITH Mr. Wiebe who will provide you with an instruction card to help you run your experiment with proper scientific controls. Perform your chosen experiment.
5. As your reactions run, answer the questions below.
6. 15 minutes before the end of the class period, VISUALLY ESTIMATE THE VOLUME of hydrogen collected in each reaction by comparing the size of the balloons to objects of known volume, such as a 400 mL beaker, a 1-liter cube, etc. Write these estimates in the proper spaces on question D.
7. TERMINATE your reactions by REMOVING THE BALLOONS AND TYING THEM SHUT (don't lose your hydrogen gas when you do this!!!). Do this even if the reactions are not completed.
8. Dump your leftover acid solutions into the waste beaker on the buffet table. Shake leftover bits of metal into the trash (not in the sink!!!).
9. At the end of the hour, your hydrogen-filled balloons will be ignited in a designated spot (Mr. Wiebe MUST SUPERVISE the explosions). To ignite the balloons, you will need to hold your balloon with tongs and bring the balloon into the flame of a Bunsen burner. Everyone must wear safety GLASSES DURING THESE EXPLOSIONS!
10. Help Mr. Wiebe clean UP the mess made from the exploding balloons.

Analysis:

1. What did you change in your experiment? Why did you choose this change? Explain in terms of collision theory.
2. What results did you observe? What conclusions can be drawn from your experiment??

Determine the rate law and rate constant for each of the following．

1． $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{HI}(\mathrm{g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{I}_{2}(\mathrm{~g})$

Trial	$\left[\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}\right]$ (\mathbf{M})	$[\mathbf{H I}]$ $\mathbf{(M)}$	Rate $(\mathbf{M} / \mathbf{s})$
1	0.10 M	0.10 M	0.0076
2	0.10 M	0.20 M	0.0152
3	0.20 M	0.10 M	0.0152

2． $2 \mathrm{NO}(g)+\mathrm{Br}_{2}(g) \rightarrow 2 \mathrm{NOBr}(g)$

Trial	$[\mathbf{N O}]$ (\mathbf{M})	$\left[\mathbf{B r}_{\mathbf{2}}\right]$ (\mathbf{M})	Rate $(\mathbf{M} / \mathbf{h})$
1	1.0	1.0	1.30×10^{-3}
2	2.0	1.0	5.20×10^{-3}
3	1.0	2.0	4.16×10^{-2}

3． $\mathrm{ClO}^{3-}(\mathrm{aq})+9 \mathrm{I}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \rightarrow 3 \mathrm{I}^{3-}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(l)$

Trial	$\left[\mathbf{C 1 O}^{3}\right]$ (\mathbf{M})	$[\mathbf{I}]$ (\mathbf{M})	$\left[\mathbf{H}^{+}\right]$ (\mathbf{M})	Rate $(\mathbf{M} / \mathbf{s})$
1	0.10	0.10	0.10	0.5
2	0.10	0.20	0.10	1.0
3	0.20	0.20	0.10	2.0
4	0.20	0.20	0.20	8.0

4. The rate law of a reaction between gases Y and Z is found to be

$$
\text { rate }=k[Y]^{2}[Z]
$$

Change in Concentration:	
Y is doubled	
Y is tripled	
Z is quadrupled	
Y is quadrupled while the concentration of Z is doubled	
Y is cut in half while the concentration of Z is doubled.	
Y and Z are both tripled	

6. Consider the reaction: $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$

The following data were obtained from three experiments using the method of initial rates:

	Initial [NO] $(\mathrm{mol} / \mathrm{L})$	Initial [$\left.\mathrm{O}_{2}\right]$ $(\mathrm{mol} / \mathrm{L})$	Initial rate NO $(\mathrm{mol} / \mathrm{L})$
Experiment 1	0.010	0.010	2.5×10^{-5}
Experiment 2	0.020	0.010	1.0×10^{-4}
Experiment 3	0.010	0.020	5.0×10^{-5}

a. Determine the order of the reaction for each reactant.
b. Write the rate equation for the reaction.
c. Calculate the rate constant.
d. Calculate the rate (in $\mathrm{mol} / \mathrm{L} \cdot \mathrm{s}$) at the instant when $[\mathrm{NO}]=0.015 \mathrm{~mol} / \mathrm{L}$ and $\left[\mathrm{O}_{2}\right]=0.0050 \mathrm{~mol} / \mathrm{L}$
6. The reaction $2 \mathrm{NO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ was studied at $904^{\circ} \mathrm{C}$, and the data in the table were collected.

	Initial [NO] $(\mathrm{mol} / \mathrm{L})$	Initial $\left[\mathrm{H}_{2}\right]$ $(\mathrm{mol} / \mathrm{L})$	Initial rate N_{2} $(\mathrm{~mol} / \mathrm{L})$
Experiment 1	0.420	0.122	0.136
Experiment 2	0.210	0.122	0.0339
Experiment 3	0.210	0.244	0.0678
Experiment 4	0.105	0.488	0.0339

a. Determine the order of the reaction for each reactant.
b. Write the rate equation for the reaction.
c. Calculate the rate constant at $904^{\circ} \mathrm{C}$.
d. Find the rate of appearance of N_{2} at the instant when $[\mathrm{NO}]=0.350 \mathrm{M}$ and $\left[\mathrm{H}_{2}\right]=0.205 \mathrm{M}$.
7. The reaction of tbutyl-bromide $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ with water is represented by the equation:

$$
\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}+\mathrm{H}_{2} \mathrm{O} \rightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}+\mathrm{HBr}
$$

The following data were obtained from three experiments using the method of initial rates:

	Initial $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}\right]$ $(\mathrm{mol} / \mathrm{L})$	Initial $\left[\mathrm{H}_{2} \mathrm{O}\right]$ $(\mathrm{mol} / \mathrm{L})$	Initial rate $(\mathrm{mol} / \mathrm{L})$
Experiment 1	5.0×10^{-2}	2.0×10^{-2}	2.0×10^{-6}
Experiment 2	5.0×10^{-2}	4.0×10^{-2}	2.0×10^{-6}
Experiment 3	1.0×10^{-1}	4.0×10^{-2}	4.0×10^{-6}

a. What is the order with respect to $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CBr}$ and $\mathrm{H}_{2} \mathrm{O}$?
c. What is the overall order of the reaction?
d. Write the rate equation.
e. Calculate the rate constant, k, for the reaction.

ACTIVITY \#7 - LAB: THE AMAZING IODINE CLOCK REACTION

We know from past activities that changing the concentration of a reactant changes the initial rate of the reaction. We also know that there is a direct relationship between these two variables, as communicated by the rate law of that reaction. In this experiment, a special reaction - called a clock reaction - will be used to measure changes in rate and concentration and determine the order of the reactants.

The balanced net ionic equation for this reaction is:

$$
3 \mathrm{IO}_{3}^{-}(\mathrm{aq})+8 \mathrm{HSO}_{3}^{-}(\mathrm{aq}) \rightarrow \mathrm{I}_{3}^{-}(\mathrm{s})+8 \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Long story short, this reaction will continue until the $\mathrm{HSO}_{3}{ }^{-}(\mathrm{aq})$ gets used up. When you see a blue-black colour appear, that signals that all the $\mathrm{HSO}_{3}^{-}(\mathrm{aq})$ has been consumed. You will measure the time it takes for the reaction to reach completion by timing the reaction from the first mixing to the appearance of the blue colour.

Remember that average rate of a reaction can be determined by the following:

$$
\text { Average Rate }=\frac{\Delta[\text { Reactant }]}{\Delta \text { time }}
$$

For this reaction specifically, the average rate can be determined as follows:

$$
\text { Average Rate }=\frac{1}{8} \frac{\Delta\left[\mathrm{HSO}_{3}\right]}{\Delta \text { time }}=\frac{1}{3} \frac{\Delta\left[\mathrm{IO}_{3}\right]}{\Delta \text { time }}
$$

Since the $\mathrm{HSO}_{3}{ }^{-}(\mathrm{aq})$ gets completely used up each trial and reaches $0 \mathrm{~mol} / \mathrm{L}$, the $\Delta\left[\mathrm{HSO}_{3}{ }^{-}\right]=\left[\mathrm{HSO}_{3}{ }^{-}\right]$initial. As such, to calculate the average rate of the reaction in each flask, we can use the following equation:

$$
\text { Average Rate }=\frac{1}{8} \frac{\left[\mathrm{HSO}_{3}\right] \text { initial }}{\Delta \text { time }}
$$

The initial $\left[\mathrm{HSO}_{3}{ }^{-}\right]$needs to be calculated for each trial of the experiment because when solutions are mixed the bisulfite concentration is diluted initially. You can calculate the initial concentration using your formula for dilution.

$$
\mathrm{M}_{1} \mathrm{~V}_{1}=\mathrm{M}_{2} \mathrm{~V}_{2}
$$

where $\mathrm{M}=$ molarity, $\mathrm{V}=$ volume, $1=$ initial, and $2=$ final

Materials:

Solution A: $0.020 \mathrm{M} \mathrm{KIO}_{\mathbf{3}}$
Solution B: $0.0080 \mathrm{M} \mathrm{NaHSO}_{3}$ in a solution containing starch and sulfuric acid

Observations:

Part 1: The Effect of Diluting HSO_{3}^{-}on the Reaction Rate

| Flask | Volume of
 $0.020 \mathrm{M} \mathrm{KIO}_{3}$ | Volume of Water | Volume of 0.0080
 M NaHSO |
| :---: | :---: | :---: | :---: | :---: | Time to React (s)

Part 2: The Effect of Diluting $\mathrm{IO}_{3}{ }^{-}$on the Reaction Rate
$\left.\begin{array}{|c|c|c|c|c|}\hline \text { Flask } & \begin{array}{c}\text { Volume of } \\ 0.020 \mathrm{M} \mathrm{KIO}_{3}\end{array} & \text { Volume of Water } & \begin{array}{c}\text { Volume of 0.0080 } \\ \text { M NaHSO }\end{array}\end{array} \begin{array}{c}\text { Average Time to } \\ \text { React (s) }\end{array}\right\}$

$\underline{\text { Analysis }}$

PART 1:

Flask	Initial [HSO $\left.{ }_{3}\right], M$	Initial [1O3 $\left.{ }_{3}\right], M$	Average Rate of Reaction $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{s})$
1			
2			
3			
4			
5			

PART 2:

Flask	Initial $\left[\mathrm{HSO}_{3}{ }^{-}\right], \mathrm{M}$	Initial $\left[\mathrm{IO}_{3}{ }^{-}\right], \mathrm{M}$	Average Rate of Reaction $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{s})$
1			
2			
3			
4			
5			

1. Calculate the initial concentrations of $\mathrm{IO}_{3}{ }^{-}(\mathrm{aq})$ and $\mathrm{HSO}_{3}^{-}(\mathrm{aq})$ for each flask in both parts of the lab and record these values on the charts above. Remember, the final volume of the dilution will be the combined volume of BOTH solutions after they are mixed. SHOW HERE your calculation of $\left[\mathrm{HSO}_{3}{ }^{-}\right]$in Flask \#2 in Part 1 of the lab.
2. Calculate the reaction rate for each trial using the formula for average rate given earlier in the handout and record these values in the charts above. SHOW HERE your calculation of average rate in Flask \#2 in Part 1 of the lab.
3. Using the information in the chart for Part 1, calculate the order for $\mathrm{HSO}_{3}-(\mathrm{aq})$.
4. Using the information in the chart for Part 2, calculate the order for $\mathrm{IO}_{3}{ }^{-}(\mathrm{aq})$.
5. Using Part 1 Trial 1, calculate the k value for this reaction. Repeat this using Part 2 Trial 1. How do your answers compare?
6. Write the complete rate late for this clock reaction.
7. Use your completed rate law to determine the rate of this reaction if you started with 0.050 M HSO3- and 0.0250M IO3-.
8. Use collision theory to briefly explain how and why increasing concentration of reactants affects rate of reaction. Do your results in this experiment agree with collision theory?
9. Use the following mechanism to answer this question:

a) The net chemical equation is:
b) The reaction intermediates are:
c) The catalyst is:
10. Use the following mechanism to answer this question:

Step 1: Br_{2}	$\rightarrow 2 \mathrm{Br}$	slow
Step 2: $\mathrm{Br}+\mathrm{OCl}_{2}$	$\rightarrow \mathrm{BrOCl}+\mathrm{Cl}$	fast
Step 3: $\mathrm{Br}+\mathrm{Cl}$	$\rightarrow \mathrm{BrCl}$	fast

a) The net chemical equation is:
b) The reaction intermediates are:
c) The catalyst is:
d) The rate determining step is:
e) The rate law is:
f) If the concentration of Br_{2} is increased will the rate of the reaction increase? Explain your answer.
g) If the concentration of OCl_{2} is increased will the rate of the reaction increase? Explain your answer.
3. Nitrogen monoxide reacts with hydrogen gas to produce nitrogen gas and water vapour. The mechanism is believed to be:

Step 1:	$2 \mathrm{NO}_{2}$	$\rightarrow \mathrm{~N}_{2} \mathrm{O}_{2}$
Step 2:	$\mathrm{N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2}$	$\rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}$
Step 3:	$\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2}$	$\rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}$

a) Determine the overall net equation
b) Identify any reaction intermediates
c) Can you determine the rate law from this information? Why or why not?
5. A proposed mechanism for a reaction is as followed:

$$
\begin{array}{ll}
\text { Step 1: } \mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) & \text { Slow } \\
\text { Step 2: } \mathrm{O}_{3}(\mathrm{~g})+\mathrm{O}(\mathrm{~g}) \rightarrow 2 \mathrm{O}_{2}(\mathrm{~g}) & \text { Fast }
\end{array}
$$

a) Write the rate law equation expected for this mechanism.
b) What is the overall net chemical equation for this mechanism?
c) What is the intermediate in the mechanism?
6. The steps of a proposed reaction mechanism for a reaction are:

Step 1: $\mathrm{NO}(\mathrm{g})+\mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})$
Step 2: $\mathrm{N}_{2} \mathrm{O}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})$
a) What is the overall net chemical equation for this mechanism?
b) What is/are the intermediate(s) in the proposed reaction mechanism?
c) The rate law for this proposed mechanism was experimentally determined to be rate $=\mathrm{k}[\mathrm{NO}]^{2}\left[\mathrm{O}_{2}\right]$. Based on this, which step in the mechanism is the rate determining step and why?
7. A proposed mechanism for a reaction is as follows:

$$
\begin{array}{ll}
\text { Step 1: } \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}(\mathrm{aq}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) & \text { slow } \\
\text { Step 2: } \mathrm{C}_{4} \mathrm{H}_{9}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}_{2}^{+}(\mathrm{aq}) & \text { fast } \\
\text { Step 3: } \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}_{2}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{C}_{4} \mathrm{H}_{9} \mathrm{OH}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq}) & \text { fast }
\end{array}
$$

a) Write the rate law expected for this reaction mechanism.
b) What is the overall net chemical reaction for this mechanism?
c) What are the intermediates in the proposed mechanism?
8. A proposed mechanism for a reaction is as follows:

$$
\begin{array}{ll}
\text { Step 1: } \mathrm{NH}_{4}^{+}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq}) & \text { slow } \\
\text { Step 2: } \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HNO}_{2}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NO}^{+}(\mathrm{aq}) & \text { fast } \\
\text { Step 3: } \mathrm{NH}_{3}(\mathrm{aq})+\mathrm{NO}^{+}(\mathrm{aq}) \rightarrow \mathrm{NH}_{3} \mathrm{NO}^{+}(\mathrm{aq}) & \text { fast } \\
\text { Step 4: } \mathrm{NH}_{3} \mathrm{NO}^{+}(\mathrm{aq}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}^{+}(\mathrm{aq}) & \text { fast }
\end{array}
$$

a) What is the overall net chemical equation for this reaction mechanism?
b) What are the intermediates for this mechanism?
c) The rate law for this reaction was experimentally determined to be rate $=\mathrm{k}\left[\mathrm{HNO}_{2}(\mathrm{aq})\right]\left[\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})\right]$. Is this reaction mechanism plausible? Support your answer.
105.5 g of calcium reacts with 21.0 g of oxygen to produce calcium oxide, according to the following reaction:

$$
2 \mathrm{Ca}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CaO}(\mathrm{~s})
$$

1. The reaction takes 3 minutes and 35 seconds to reach completion. 52.9 g of calcium was left in the container at the end. What was the average rate at which the calcium was used up? Provide your answer in \mathbf{g} / \mathbf{s} and $\underline{\mathbf{m o l} / \mathbf{m i n}}$.
2. List 4 things that could be done to speed up the rate of this reaction.

Use the following data table to answer the next 3 questions

Concentrations of Reactant and Products Over Time for the Reaction 2NO $\mathbf{2}_{2}(\mathbf{g}) \rightarrow \mathbf{2 N O}(\mathbf{g})+\mathbf{O}_{2}(\mathbf{g})$			
	Concentration (mol/L)		
Time (s)	NO_{2}	NO	O_{2}
0	0.0100	0	0
50	0.0079	0.0021	0.0011
100	0.0065	0.0035	0.0018
150	0.0055	0.0045	0.0023
200	0.0048	0.0052	0.0026

4. Calculate the average rate of disappearance of NO_{2} from 100 to 200 seconds
5. Calculate the average rate of appearance of O_{2} from 100 to 200 seconds
6. Use Collision Theory and the balanced chemical equation for this reaction to explain why your answers to $4 \& 5$ are not the same.
7. Use the tangent line method to calculate the instantaneous rate of reaction in $\mathrm{mol} / \mathrm{L} \cdot \mathrm{h}$ at both of the following points:
a) $30 \mathrm{~mol} / \mathrm{L}$
b) $10 \mathrm{~mol} / \mathrm{L}$

8. Use Collision Theory to explain why the instantaneous rates at both points in time in question 7 are not the same.
9. Consider the combustion of propane, $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$. If the rate of disappearance of $\mathrm{O}_{2}(\mathrm{~g})$ during a period is $6.4 \mathrm{~mol} / \mathrm{L} \cdot \mathrm{s}$, determine the rates of the following during the same period.
a. What is the rate of disappearance of $\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})$?
b. What is the rate of appearance of $\mathrm{CO}_{2}(\mathrm{~g})$?
c. What is the rate of appearance of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
10. Use Kinetic Molecular Theory and Collision Theory to explain why and how the following changes causes the rate of a reaction to increase.

Increasing Concentration

Increasing Temperature

Adding a Catalyst
Increasing Surface Area

The following is information about a chemical reaction. Use it to answer the following questions.

Potential Energy of Reactant Molecules	$30 \mathrm{~kJ} / \mathrm{mol}$
Change in Potential Energy (Enthalpy)	$-20 \mathrm{~kJ} / \mathrm{mol}$
Activation Energy	$40 \mathrm{~kJ} / \mathrm{mol}$

11. Draw the PE curve on the grid provided.
12. The potential energy stored in the molecules of the products is \qquad
13. The activation energy to make the reaction occur in reverse is \qquad
14. Use a dotted line (-------) to sketch the diagram of a catalyzed version of the same reaction on the same grid.

15. Below is some initial rate data for the reaction, $\mathrm{A}+\mathrm{B} \rightarrow 2 \mathrm{C}$.

[A]	$[\mathbf{B}]$	Rate $(\mathrm{mol} / \mathrm{L} \cdot \mathrm{s})$
0.40	0.10	3.5×10^{3}
0.20	0.10	1.8×10^{3}
0.20	0.20	1.45×10^{4}

a) Determine the orders of reactants A \qquad and B \qquad
b) Write the rate law for this reaction: \qquad
c) Calculate the value of the rate constant, \mathbf{k}. \qquad
d) Calculate the rate of the reaction if $[\mathrm{A}]=0.50 \mathrm{M}$ and $[\mathrm{B}]=0.65 \mathrm{M}$.
16. Consider the following reaction:

$$
2 \mathrm{NO}+2 \mathrm{H}_{2}+100 \mathrm{~kJ} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{N}_{2} \quad \text { Rate }=\mathrm{k}[\mathrm{NO}]\left[\mathrm{H}_{2}\right]
$$

A proposed mechanism for the above reaction is:

```
Step 1: \(\mathrm{NO}+\mathrm{H}_{2} \rightarrow \mathrm{~N}+\mathrm{H}_{2} \mathrm{O}\)
Step 2:
                            ?
Step 3: \(\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O}\)
```

a) Write the equation for step 2 in the proposed mechanism.
b) Which step is the rate determining step? How can you tell?
c) Is this reaction endothermic or exothermic? How did you determine this?
17. Consider this reaction mechanism:

$$
\begin{gathered}
\mathrm{HCOOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{HCOOH}_{2}^{+}+\mathrm{HSO}_{4}^{-} \\
\mathrm{HCOOH}_{2}^{+} \rightarrow \mathrm{COH}^{+}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{COH}^{+}+\mathrm{HSO}_{4}^{-} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{SO}_{4}
\end{gathered}
$$

a) What is the overall reaction? \qquad
b) List any "intermediates." \qquad
c) List any catalysts.
d) If the first step is the slow step, what is the rate law?

Solubility of Common Compounds in Water

The term soluble here means $>0.1 \mathrm{~mol} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$.

Negative Ions (Anions)	Positive Ions (Cations)	Solubility of Compounds
All	Alkali ions: $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}, \mathrm{Fr}^{+}$	Soluble
All	Hydrogen ion: H^{+}	Soluble
All	Ammonium ion: $\mathrm{NH}_{4}{ }^{+}$	Soluble
Nitrate, $\mathrm{NO}_{3}{ }^{-}$	All	Soluble
orChloride, Cl^{-}or$\mathrm{Bromide}, \mathrm{Br}^{-}$Iodide, I^{-}	All others	Soluble
	$\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}, \mathrm{Cu}^{+}$	Low Solubility
Sulphate, $\mathrm{SO}_{4}{ }^{2-}$	All others	Soluble
	$\mathrm{Ag}^{+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Pb}^{2+}$	Low Solubility
Sulphide, S^{2-}	Alkali ions, $\mathrm{H}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{Be}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}$	Soluble
	All others	Low Solubility
Hydroxide, OH^{-}	Alkali ions, $\mathrm{H}^{+}, \mathrm{NH}_{4}^{+}, \mathrm{Sr}^{2+}$	Soluble
	All others	Low Solubility
$\begin{aligned} & \text { or Phosphate, } \mathrm{PO}_{4}{ }^{3-} \\ & \text { or } \\ & \text { Carbonate, } \mathrm{CO}_{3}{ }^{2-} \\ & \text { or } \\ & \text { Sulphite, } \mathrm{SO}_{3}{ }^{2-} \end{aligned}$	Alkali ions, $\mathrm{H}^{+}, \mathrm{NH}_{4}^{+}$	Soluble
	All others	Low Solubility

Periodic Chart of Ions

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} 1 \\ \mathbf{H} \\ \substack{\text { Hydrogen } \\ 1.0} \end{gathered}$							$— \text { Ato }$	Numbe									2 He Helum 4.0
$\begin{gathered} \hline 3 \\ \mathrm{Li} \\ \text { Lithium } \\ 6.9 \end{gathered}$	4 Be Beryllium 9.0					$\begin{aligned} & \mathbf{S i} \\ & \text { Silicon } \\ & 28.1 \end{aligned}$	$\begin{aligned} - & \text { Symb } \\ - & \text { Nam } \\ & \text { Atom } \end{aligned}$	Mass				$\begin{gathered} 5 \\ \text { B } \\ \text { Boron } \\ 10.8 \end{gathered}$	6 Carbon 12.0	$\mathbf{7}$ \mathbf{N} Nitrogen 14.0	$\begin{gathered} 8 \\ \text { O } \\ \text { oxyen } \\ 16.0 \end{gathered}$	9 \mathbf{F} Fuvorine 19.0	$\begin{aligned} & \hline 10 \\ & \mathrm{Ne} \\ & \text { Neon } \\ & 20.2 \end{aligned}$
11 Na sadium 23.0	12 Mg Magnesium 24.3											13 $\mathbf{A l}$ Aluminum 27.0	$\begin{gathered} 14 \\ \mathrm{Si} \\ \text { Silicon } \\ \text { Si } \end{gathered}$	15 \mathbf{P} Phosphous 31.0	$\begin{gathered} 16 \\ \mathbf{S} \\ \text { Sulphur } \\ 32.1 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ \text { Chlorine } \\ 35.5 \end{gathered}$	$\begin{gathered} 18 \\ \text { Ar } \\ \text { Argon } \\ 39.9 \end{gathered}$
$\begin{gathered} 19 \\ \mathbf{K} \\ \text { Potassium } \\ 39.1 \end{gathered}$	$\begin{gathered} \hline 20 \\ \mathrm{Ca} \\ \text { Calcium } \\ 40.1 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ \text { Scandum } \\ 45.0 \end{gathered}$	$\begin{gathered} \hline 22 \\ \mathrm{Ti} \\ \text { Thanium } \\ 47.9 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ \text { Vanadium } \\ 50.9 \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ \text { Chromium } \\ 52.0 \end{gathered}$	$\begin{gathered} \hline 25 \\ \mathrm{Mn} \\ \text { Manganese } \\ 54.9 \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ \text { Iron } \\ 55.8 \end{gathered}$	$\begin{aligned} & 27 \\ & \text { Co } \\ & \text { Cobath } \\ & 58.9 \end{aligned}$	$\begin{gathered} \hline 28 \\ \mathrm{Ni} \\ \text { Nickel } \\ 58.7 \end{gathered}$	$\begin{gathered} 29 \\ \mathrm{Cu} \\ \text { Copper } \\ 63.5 \end{gathered}$	$\begin{aligned} & 30 \\ & \text { Zn } \\ & \text { Zno } \\ & 65.4 \end{aligned}$	31 Ga Gallium 69.7	32 $\left.\begin{array}{c}\text { Ge } \\ \text { Germanium } \\ 72.6\end{array}\right]$ 50	33 As Asenic 74.9	$\begin{gathered} 34 \\ \text { Se } \\ \text { Selenium } \\ 79.0 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ \text { Bromine } \\ 79.9 \end{gathered}$	$\begin{gathered} \hline 36 \\ \mathrm{Kr} \\ \text { Kypplon } \\ 83.8 \end{gathered}$
$\begin{gathered} 37 \\ \text { Rb } \\ \text { Rubidum } \\ 85.5 \end{gathered}$	38 Sr Stontum 87.6	$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Yutrium } \\ 88.9 \end{gathered}$	$\begin{gathered} 40 \\ \mathrm{Zr} \\ \text { Zriconium } \\ 91.2 \end{gathered}$	41 Nb Nobbum 92.9	$\begin{gathered} \hline 42 \\ \text { Mo } \\ \text { Molydodenum } \\ 95.9 \end{gathered}$	$\begin{gathered} \hline 43 \\ \text { Tc } \\ \substack{\text { Technetium } \\ (98)} \end{gathered}$	44 Ru Ruthenium 101.1	$\begin{gathered} 45 \\ \text { Rh } \\ \text { Phodium } \\ 102.9 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ \text { Palladum } \\ 106.4 \end{gathered}$	$\begin{gathered} \hline 47 \\ \mathbf{A g} \\ \text { siver } \\ 107.9 \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ \text { Cadmium } \\ 112.4 \end{gathered}$	$\begin{gathered} \hline 49 \\ \text { In } \\ \text { Indium } \\ 114.8 \end{gathered}$	$\begin{gathered} \hline 50 \\ \mathrm{Sn} \\ \operatorname{Tin} \\ 118.7 \end{gathered}$	51 Sb Antimony 121.8	$\begin{gathered} 52 \\ \mathrm{Te} \\ \text { Tellurum } \\ 127.6 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ \text { lodine } \\ 126.9 \end{gathered}$	$\begin{gathered} 54 \\ \text { Xe } \\ \text { Xenon } \\ 131.3 \end{gathered}$
55 Cs Cesium 132.9	56 Ba Barium 137.3	57 La Lanthanum 138.9	$\begin{gathered} \hline 72 \\ \text { Hf } \\ \text { Hafnium } \\ 178.5 \end{gathered}$	$\begin{gathered} \hline 73 \\ \mathrm{Ta} \\ \text { Tantaum } \\ 180.9 \end{gathered}$	$\begin{gathered} 74 \\ \text { W } \\ \text { Ungsten } \\ 183.8 \end{gathered}$	$\begin{gathered} 75 \\ \text { Re } \\ \text { Rhenium } \\ 186.2 \end{gathered}$	$\begin{gathered} 76 \\ \text { Os } \\ \text { Osmium } \\ 190.2 \end{gathered}$	77 Ir Irdium 192.2	78 Pt Platioum 195.1	79 Au Gold 197.0	80 Hg Mercury 200.6	81 TI Thallum 204.4	$\begin{gathered} \hline 82 \\ \mathrm{~Pb} \\ \text { Lead } \\ 207.2 \end{gathered}$	$\begin{gathered} 83 \\ \mathrm{Bi} \\ \text { Bismuth } \\ 209.0 \end{gathered}$	84 Po Polonium (209)	85 At Astatine (210)	86 $\mathbf{R n}$ Radon (222)
$\begin{gathered} 87 \\ \mathrm{Fr} \\ \text { Francium } \\ (223) \end{gathered}$	88 Ra Radium (226)	89 Ac Actinum (227)	104 $\mathbf{R f}$ Rutheroforium (261)	$\begin{gathered} 105 \\ \text { Db } \\ \text { Dubnium } \\ (262) \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ \text { Seaborgum } \\ (263) \end{gathered}$	$\begin{aligned} & \hline 107 \\ & \text { Bh } \\ & \text { Bohrium } \\ & (262) \end{aligned}$	108 Hs Hassium (265)	$\begin{gathered} 109 \\ \mathrm{Mt} \\ \text { Meiterium } \\ (266) \end{gathered}$									

