CHEMISTRY 30S

The Alchemist's Notebook

UNIT 2 - CHEMICAL REACTIONS

NAME:

LET'S GET STARTED!

By the end of this unit, should be able to:
\checkmark Write balanced formula equations for a variety of types of chemical reactions, including predicting the products.
\checkmark Interpret a balanced equation in terms of mole/volume of gas ratios.
\checkmark Solve stoichiometric problems involving moles and mass, given the reactants and products in a balanced chemical reaction.
\checkmark Use the molar volume of a gas as a conversion factor in stoichiometric problems
\checkmark Determine \% yield of a chemical reaction from the actual and theoretical yield.
\checkmark Identify the limiting reactant and calculate the mass of a product, given the reaction equation and reactant data.
\checkmark Perform an experiment to determine the percent yield of a chemical reaction

This unit will take about $\mathbf{1 5}$ lessons to complete and will make up approximately $\underline{\mathbf{1 5 \%}} \mathbf{~ o f ~ y o u r ~}$ mark.

1. COMMUNICATING CHEMICAL REACTIONS

UNIT 2 CHEMICAL REACTIONS

CH3OS MR. WIEBE

1

COMMUNICATING REACTIONS

Methane gas (carbon tetrahydride) combusts with oxygen gas from the air to produce carbon dioxide and water vapour.

WORD EQUATION:

FORMULA EQUATION:

sOMETHING'S NOT RIGHT HERE...

Reactants	$=1 \mathrm{Products}$
1 C atom	$=1 \mathrm{C}$ atom
4 H atoms	$\neq 2 \mathrm{H}$ atoms
2 O atoms	$\neq 30$ atoms

BALANCING A FORMULA EQUATION

- For a formula equation to be correct, it must be BALANCED.
- MULTIPLIERS are added in front of each formula. These multipliers are called COEFFICIENTS.

Two molecules water (contain four H atoms and two O atoms)
$\mathrm{H}_{2} \mathrm{O}$

Changing subscript changes identity and properties
\square
$\mathrm{H}_{2} \mathrm{O}_{2}$

One molecule hydrogen peroxide (contains two H atoms and two O atoms)

ADJUSTING QUANTITIES

GENERAL BALANCING PRINCIPLES
$— \mathrm{Al}+\quad-\mathrm{O}_{2} \rightarrow \quad-\mathrm{Al}_{2} \mathrm{O}_{3}$
$__{—} \mathrm{Na}(\mathrm{OH})+\ldots \mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3} \rightarrow \quad __{-} \mathrm{Na}\left(\mathrm{NO}_{3}\right)+\ldots \mathrm{Fe}(\mathrm{OH})_{3}$
$]_{2} \mathrm{C}_{2} \mathrm{H}_{6}+\ldots \mathrm{O}_{2} \quad \rightarrow \ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}$

7

2. REACTION TYPES

UNIT 2 CHEMICAL REACTIONS

CH3OS MR. WIEBE

1

REACTION TYPES

A synthesis (or combination) reaction involves two or more simple substances (elements or compounds) combining to form one more complex substance.

A decomposition reaction involves a complex compound being broken down or decomposed into two or more simpler substances (elements or compounds).

REACTION TYPES

A combustion reaction involves the reaction of a hydrocarbon (a compound made up of hydrogen and carbon) or a carbohydrate (a compound made up of hydrogen, carbon and oxygen) with oxygen gas to produce carbon dioxide gas and water.

$$
\begin{aligned}
& 2 \mathrm{C}_{8} \mathrm{H}_{18}(l)+25 \mathrm{O}_{2}(g) \rightarrow 16 \mathrm{CO}_{2}(g)+18 \mathrm{H}_{2} \mathrm{O}(g) \\
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(g) \rightarrow 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
\end{aligned}
$$

REACTION TYPES

A single replacement reaction (also called single displacement) involves a reaction between a compound and an element so that the element replaces an element of the same type in the compound. The result is a new compound and a new element.

A double replacement reaction is a chemical reaction between two compounds that trade cations (or anions) with one another.

EXAMPLE

A solution of magnesium chloride reacts with a solution of silver nitrate and a reaction occurs.

Words			
Formulas			
Pictures			
$(\mathrm{Cl})\left(\mathrm{Mg}^{+2}\right)(\mathrm{Cl})+$	$\left(\mathrm{Ag}^{+}\right)\left(\mathrm{No}_{3}^{-}\right)$		
Balanced Equation			

5

3. STOICHIOMETRY

CH3OS
UNIT 2 - CHEMICAL REACTIONS
MR. WIEBE

1

1 cup butter
1/2 cup white sugar
1 cup packed brown sugar
1 teaspoon vanilla extract
2 eggs
2 1/2 cups all-purpose flour
1 teaspoon baking soda
1 teaspoon salt
2 cups semisweet chocolate chips
Makes 3 dozen

How many eggs are needed to make 3 dozen cookies?
How many eggs would we need to make 9 dozen cookies?
How much brown sugar would I need if I used $11 / 2$ cups white sugar?

THE ANALOGY

BAKING	CHEMICAL REACTIONS
The Recipe	
The Ingredients (butter, sugar, etc)	
The Amounts (cups, teaspoons, etc)	
The Delicious Cookies!	

IT'S ALL ABOUT THE MOLE RATIOS!
THE REACTION THAT WILL TAKE PLACE IN OUR ROCKETS:
$\underline{\mathbf{2}} \mathrm{H}_{2}+\underline{1} \mathrm{O}_{2} \rightarrow \underline{\mathbf{2}} \mathrm{H}_{2} \mathrm{O}$

- What is the ideal mole ratio of reactants for this reaction?
- What are some ways we could write this ratio?

IT'S ALL ABOUT THE MOLE RATIOS!

THE REACTION THAT WILL TAKE PLACE IN OUR ROCKETS:

$$
\underline{2} \mathrm{H}_{2}+\underline{1} \mathrm{O}_{2} \rightarrow \underline{2} \mathrm{H}_{2} \mathrm{O}
$$

If we had 3 moles of oxygen available, how many moles of hydrogen would we need to react with it completely? How many moles of water would be produced?

EXAMPLE \#1

A small piece of aluminum foil is placed in a solution of copper(II) chloride. A reaction occurs.

1. What type of reaction will occur?
2. Write the word equation for this reaction.
3. Write the formula equation for this reaction.
4. Balance your formula equation.

Balanced Equation:

What mass of copper will be produced if 5.0 g of aluminum foil is completely reacted?

EXAMPLE \#1

Balanced Equation:

What mass of aluminum foil is required to react to produce 25.0 g of copper?

EXAMPLE \#2

A small piece of magnesium is placed in a solution of hydrochloric acid (hydrogen chloride). A reaction occurs.

Balanced Equation:

What volume of hydrogen gas will be produced if 0.50 g of magnesium is completely reacted?

EXAMPLE \#3

A candle made of paraffin wax $\left(\mathrm{C}_{25} \mathrm{H}_{52}\right)$ is combusted.

Balanced Equation:

How many water molecules will be produced if 1.25 g of paraffin wax are combusted?

4. PERCENT YIELD

CHIOS UNIT 2-CHEMICALREACTIONS MR. WIEBE
(A.K.A. "What you got compared to what you should got!")

YOU CAN'T ALWAYS GET WHAT YOU WANT!

Percentage Yield $=\frac{\text { Actual Yield }}{\text { Theoretical Yield }} \times \quad 100 \%$

Actual Yield is what is experimentally measured in the lab.
Theoretical Yield is what is calculated using stoichiometry.

EXAMPLE \#1

In an experiment 152. g of AgNO_{3} is reacted with excess $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After the reaction is complete, 75.1 g of $\mathrm{Ag}_{2} \mathrm{SO}_{4}$ was collected. Calculate the percentage yield.

$$
\underline{2} \mathrm{AgNO}_{3(\mathrm{aq)}}+\underline{1} \mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})} \rightarrow \quad \underline{1} \mathrm{Ag}_{2} \mathrm{SO}_{4(\mathrm{~s})}+\underline{2} \mathrm{NaNO}_{3(\mathrm{aq})}
$$

EXAMPLE \#2

Calculate the theoretical yield in litres at STP of CO_{2} in the reaction of 100.0 g of $\mathrm{Fe}_{2} \mathrm{O}_{3}$. If the actual yield was 19.0 L @ STP, calculate the percentage yield.

$$
2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \rightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}
$$

5. LIMITING REACTANTS

CH3OS UNIT 2-CHEMICALREACTIONS MR. WIEBE

MMMM....CHEMISTRY CAKE!

You have 20 cups of flour, 8 cups of sugar, 30 litres of milk and 48 eggs in your kitchen. The recipe for chemistry cake is:

> | 3 cups of flour |
| :--- |
| 2 cups of sugar |
| 2 litres of milk |
| $+\quad 6$ eggs |
| $=1$ chemistry cake |

BE A CHEMISTRY-CAKE BOSS!

You have 20 cups of flour, 8 cups of sugar, 30 litres of milk and 48 eggs in your kitchen. The recipe for chemistry cake is:

3 cups of flour
2 cups of sugar
2 litres of milk
+6 eggs
= 1 chemistry cake

1. How many cakes can you make?
2. Which ingredient ran out first and limited the number of cakes you could make?
3. What and how much of each ingredient is left over?
4. What does this assignment have to do with chemistry?

INTRODUCING...THE ICE TABLE!

You have 20 cups of flour, 8 cups of sugar, 30 litres of milk and 48 eggs in your kitchen. What is the limiting ingredient? How much of each excess ingredient is left over?

	3 F	$+2 \mathrm{~S}+2 \mathrm{M}+$	$6 \mathrm{E} \rightarrow$	1 Cake	
$\mathrm{I}_{\text {nitial }}$					
$\mathrm{C}_{\text {hange }}$					
$\mathrm{E}_{\text {nd }}$					

EXAMPLE \# 1

14.0 mole Ga and 12.0 mole O_{2} react. Find the limiting reactant, the mass of excess reactant and product made.
$\ldots \mathrm{C}_{2} \mathrm{Oa} \rightarrow \mathrm{O}_{2} \mathrm{Ga}_{2} \mathrm{O}_{3}$

EXAMPLE \#2
14.0 g of Al reacts with 94.0 g of Br_{2}. Find the limiting reactant, the mass of the excess reactant and product.

$$
\ldots \mathrm{Al}+\ldots \mathrm{Br}_{2} \rightarrow \ldots \mathrm{AlBr}_{3}
$$

EXAMPLE \#3

25.0 g of $\mathrm{H}_{3} \mathrm{PO}_{4}$ reacts with 94.0 g of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$. Find the limiting reactant, the mass of the excess reactant and product.
$ـ_{-} \mathrm{H}_{3} \mathrm{PO}_{4}+\ldots \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \ldots \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}+\ldots \mathrm{HNO}_{3}$

Fundamental Constants

Name	Symbol	Value
Speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Magnitude of charge of electron	e	$1.602 \times 10^{-19} \mathrm{C}$
Planck's constant	h	$6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
Boltzmann constant	k	$1.381 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Avogadro's number	N_{A}	$6.022 \times 10^{23} \mathrm{particles} / \mathrm{mol}$
Gas constant, SI	R	$8.314 \mathrm{~L} \cdot \mathrm{kPa} / \mathrm{mol} \cdot \mathrm{K}$
Gas constant	R	$0.08206 \mathrm{~L} \cdot \mathrm{~atm} / \mathrm{mol} \cdot \mathrm{K}$
Mass of electron	m_{e}	$9.109 \times 10^{-31} \mathrm{~kg}$
Mass of proton	m_{p}	$1.673 \times 10^{-27} \mathrm{~kg}$
Mass of neutron	m_{n}	$1.675 \times 10^{-27 \mathrm{~kg}}$
Faraday constant	\mathscr{F} or F	$96485 \mathrm{C} / \mathrm{mol} \mathrm{e}$

International System (SI) Units

Physical Quantity	Name of Unit	Symbol
	base units	
Length (I)	Meter	m
Mass (m)	Kilogram	kg
Time (t)	Second	s
Temperature (T)	Kelvin	K
Electric Current (I)	Ampere	A
Luminous Intensity (φ)	Candela	cd
Amount of Substance	Mole	mol
	derived units	
Area (A)	square meter	m^{2}
Volume (V)	cubic meter	m^{3}
Frequency (v)	Hertz	$\mathrm{Hz}\left[\mathrm{s}^{-1}\right]$
Speed, velocity (v)	meter per second	m / s
Force (F)	Newton	$\mathrm{N}\left[\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}\right]$
Pressure (P)	Pascal	$\mathrm{Pa}\left[\mathrm{N} / \mathrm{m}^{2}\right]$

Common SI Prefixes

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10^{12}	tera	T	10^{-2}	centi	c
10^{9}	giga	G	10^{-3}	milli	m
10^{6}	mega	M	10^{-6}	micro	μ
10^{3}	kilo	k	10^{-9}	nano	n
			10^{-12}	pico	p
			10^{-15}	femto	f

acetate	$\mathrm{CH}_{3} \mathrm{COO}^{-}$	TABLE OF POLYATOMIC IONS		oxalate perchlorate	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
arsenate	$\mathrm{AsO}_{4}{ }^{\text {- }}$	dihydrogen phosphate $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$			
arsenite	$\mathrm{AsO}_{3}{ }^{3-}$	hydrogen carbonate	$\mathrm{HCO}_{3}{ }^{-}$	periodate	$\mathrm{IO}_{4}{ }^{-}$
benzoate	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}$	hydrogen oxalate	$\mathrm{HC}_{2} \mathrm{O}_{4}{ }^{-}$	permanganate	$\mathrm{MnO}_{4}{ }^{-}$
borate	$\mathrm{BO}_{3}{ }^{\text {- }}$	hydrogen sulfate	$\mathrm{HSO}_{4}{ }^{-}$	peroxide	$\mathrm{O}_{2}{ }^{2-}$
bromate	$\mathrm{BrO}_{3}{ }^{-}$	hydrogen sulfide	HS HSO	phosphate	$\mathrm{PO}_{4}{ }^{3}$
carbonate	$\mathrm{CO}_{3}{ }^{2-}$	hydrogen sulfite hydroxide	$\mathbf{O H}^{-}$	pyrophosphate sulfate	SO
chlorate	ClO_{3}	hypochlorite	ClO^{-}	sulfite	SO_{3}
chlorite chromat	Cl	iodate	IO_{3}	thiocyanate	SCN^{-}
C	CrO_{4}^{-}	monohydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$	thiosulfate	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
		nitrate	NO_{3}	POSITIVE POLYATO	MIC IONS
cyanide		nitrite	NO_{2}	ammonium	$\mathrm{NH}_{4}{ }^{+}$
dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2}$	orthosilicate	$\mathrm{SiO}_{4}{ }^{4-}$	hydronium	$\mathrm{H}_{3} \mathrm{O}^{+}$

PERIODIC TABLE OF IONS

13	
5	
B	
boron	

Al^{3+} $\mathrm{Al}^{3+} \mathrm{Si} \quad \mathrm{P}^{3-} \quad \mathrm{S}^{2-} \quad \mathrm{Cl}^{-} \quad$| Ar |
| ---: |

 gallium germanium arsenide selenide bromide krypton的 $\underset{\times}{\stackrel{\circ}{0}}$

 $\stackrel{\sim}{\sim}$
The Periodic Table of the Elements

颜®	
${ }_{\text {E }}^{\text {E }}$	
	唇历
	唇の

