CHEMISTRY 30S

The Alchemist's Notebook

UNIT 2 – CHEMICAL REACTIONS

NAME:

LET'S GET STARTED!

By the end of this unit, should be able to:

- ✓ Write balanced formula equations for a variety of types of chemical reactions, including predicting the products.
- ✓ Interpret a balanced equation in terms of mole/volume of gas ratios.
- ✓ Solve stoichiometric problems involving moles and mass, given the reactants and products in a balanced chemical reaction.
- ✓ Use the molar volume of a gas as a conversion factor in stoichiometric problems
- ✓ Determine % yield of a chemical reaction from the actual and theoretical yield.
- ✓ Identify the limiting reactant and calculate the mass of a product, given the reaction equation and reactant data.
- ✓ Perform an experiment to determine the percent yield of a chemical reaction

This unit will take about <u>15 lessons</u> to complete and will make up approximately <u>15% of your mark</u>.

1. COMMUNICATING CHEMICAL REACTIONS

UNIT 2 CHEMICAL REACTIONS

CH30S MR. WIEBE

1

COMMUNICATING REACTIONS

Methane gas (carbon tetrahydride) combusts with oxygen gas from the air to produce carbon dioxide and water vapour.

WORD EQUATION:

FORMULA EQUATION:

BALANCING A FORMULA EQUATION

- For a formula equation to be correct, it must be **BALANCED**.
- MULTIPLIERS are added in front of each formula. These multipliers are called <u>COEFFICIENTS</u>.

GENERAL BALANCING PRINCIPLES

$$_$$
 Al + $_$ \bigcirc_2 \rightarrow $_$ Al₂ \bigcirc_3

$$_$$
 Na(OH) + $_$ Fe(NO₃)₃ \rightarrow $_$ Na(NO₃) + $_$ Fe(OH)₃

$$\underline{\hspace{0.5cm}}$$
 $C_2H_6 + \underline{\hspace{0.5cm}}$ $O_2 \rightarrow \underline{\hspace{0.5cm}}$ $CO_2 + \underline{\hspace{0.5cm}}$ H_2O

	FX	A	NΛ	P	ΙF
- 1		/ \	/ V I		

A strip of aluminum reacts with copper(II) chloride to produce copper and aluminum chloride.

Words		
Formulas		
Pictures		
Balanced Equation		

2. REACTION TYPES

UNIT 2 CHEMICAL REACTIONS

CH30S MR. WIEBE

1

REACTION TYPES

A **synthesis** (or combination) reaction involves two or more simple substances (elements or compounds) combining to form one more complex substance.

A **decomposition** reaction involves a complex compound being broken down or decomposed into two or more simpler substances (elements or compounds).

REACTION TYPES

A **combustion** reaction involves the reaction of a hydrocarbon (a compound made up of hydrogen and carbon) or a carbohydrate (a compound made up of hydrogen, carbon and oxygen) with oxygen gas to produce carbon dioxide gas and water.

$$2 C_8 H_{18}(I) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(g)$$

$$C_6H_{12}O_6(s) + 6O_2(g) \rightarrow 6CO_2(g) + 6H_2O(l)$$

3

REACTION TYPES

A **single replacement** reaction (also called single displacement) involves a reaction between a compound and an element so that the element replaces an element of the same type in the compound. The result is a new compound and a new element.

A **double replacement** reaction is a chemical reaction between two compounds that trade cations (or anions) with one another.

EXAMPLE

A solution of magnesium chloride reacts with a solution of silver nitrate and a reaction occurs.

3. STOICHIOMETRY

CH30S

UNIT 2 - CHEMICAL REACTIONS

MR. WIEBE

1

REACTIONS ARE LIKE BAKING!

- 1 cup butter
- 1/2 cup white sugar
- 1 cup packed brown sugar
- 1 teaspoon vanilla extract
- 2 eggs
- 2 1/2 cups all-purpose flour
- 1 teaspoon baking soda
- 1 teaspoon salt
- 2 cups semisweet chocolate chips

Makes 3 dozen

How many eggs are needed to make 3 dozen cookies?

How many eggs would we need to make 9 dozen cookies?

How much brown sugar would I need if I used 1 ½ cups white sugar?

THE ANALOGY

BAKING	CHEMICAL REACTIONS
The Recipe	
The Ingredients (butter, sugar, etc)	
The Amounts (cups, teaspoons, etc)	
The Delicious Cookies!	

3

IT'S ALL ABOUT THE MOLE RATIOS!

THE REACTION THAT WILL TAKE PLACE IN OUR ROCKETS:

$$2 H_2 + 1 O_2 \rightarrow 2 H_2 O$$

• What is the ideal mole ratio of reactants for this reaction?

• What are some ways we could write this ratio?

IT'S ALL ABOUT THE MOLE RATIOS!

THE REACTION THAT WILL TAKE PLACE IN OUR ROCKETS:

$$\underline{2} H_2 + \underline{1} O_2 \rightarrow \underline{2} H_2 O$$

If we had 3 moles of oxygen available, how many moles of hydrogen would we need to react with it completely? How many moles of water would be produced?

5

A small piece of aluminum foil is placed in a solution of copper(II) chloride. A reaction occurs.

- 1. What type of reaction will occur?
- 2. Write the word equation for this reaction.
- 3. Write the formula equation for this reaction.
- 4. Balance your formula equation.

7

EXAMPLE #1

Balanced Equation:

What mass of copper will be produced if <u>5.0 g of aluminum</u> foil is completely reacted?

Balanced Equation:

What mass of aluminum foil is required to react to produce 25.0 g of copper?

9

EXAMPLE #2

A small piece of magnesium is placed in a solution of hydrochloric acid (hydrogen chloride). A reaction occurs.

Balanced Equation:

What volume of hydrogen gas will be produced if 0.50 g of magnesium is completely reacted?

A candle made of paraffin wax ($C_{25}H_{52}$) is combusted.

Balanced Equation:

How many water molecules will be produced if 1.25 g of paraffin wax are combusted?

4. PERCENT YIELD

CH30S UNIT 2 - CHEMICAL REACTIONS MR. WIEBE

(A.K.A. "What you got compared to what you should got!")

1

YOU CAN'T ALWAYS GET WHAT YOU WANT!

Percentage Yield = <u>Actual Yield</u> x 100% Theoretical Yield

Actual Yield is what is experimentally measured in the lab.

Theoretical Yield is what is calculated using stoichiometry.

In an experiment 152. g of AgNO $_3$ is reacted with excess Na $_2$ SO $_4$. After the reaction is complete, 75.1g of Ag $_2$ SO $_4$ was collected. Calculate the percentage yield.

$$\underline{2} \text{ AgNO}_{3(aq)} + \underline{1} \text{ Na}_2 \text{SO}_{4(aq)} \rightarrow \underline{1} \text{ Ag}_2 \text{SO}_{4(s)} + \underline{2} \text{ NaNO}_{3(aq)}$$

3

EXAMPLE #2

Calculate the theoretical yield in litres at STP of CO_2 in the reaction of 100.0 g of Fe_2O_3 . If the actual yield was 19.0 L @ STP, calculate the percentage yield.

$$2Fe_2O_3$$
 + $3C$ \rightarrow $4Fe$ + $3CO_2$

5. LIMITING REACTANTS

CH30S

UNIT 2 - CHEMICAL REACTIONS

MR. WIEBE

1

MMMM....CHEMISTRY CAKE!

You have **20 cups** of flour, **8 cups** of sugar, **30 litres** of milk and **48 eggs** in your kitchen. The recipe for chemistry cake is:

3 cups of flour

2 cups of sugar

2 litres of milk

+ 6 eggs

= 1 chemistry cake

BE A CHEMISTRY-CAKE BOSS!

You have 20 cups of flour, 8 cups of sugar, 30 litres of milk and 48 eggs in your kitchen. The recipe for chemistry cake is:

- 3 cups of flour
- 2 cups of sugar
- 2 litres of milk
- +6 eggs
 - = 1 chemistry cake

- How many cakes can you make?
- 2. Which ingredient ran out first and limited the number of cakes you could make?
- 3. What and how much of each ingredient is left over?
- 4. What does this assignment have to do with chemistry?

3

INTRODUCING...THE ICE TABLE!

You have 20 cups of flour, 8 cups of sugar, 30 litres of milk and 48 eggs in your kitchen. What is the limiting ingredient? How much of each excess ingredient is left over?

	3F -	- 2S +	2M +	6E →	1Cake
Initial					
Change					
End					

14.0 mole Ga and 12.0 mole O_2 react. Find the limiting reactant, the mass of excess reactant and product made.

$$__Ga$$
 + $__O_2$ \longrightarrow $__Ga_2O_3$

5

EXAMPLE #2

14.0 g of Al reacts with 94.0 g of Br₂. Find the limiting reactant, the mass of the excess reactant and product.

$$__Al$$
 + $__Br_2$ \rightarrow $__AlBr_3$

25.0 g of H_3PO_4 reacts with 94.0 g of $Ca(NO_3)_2$. Find the limiting reactant, the mass of the excess reactant and product.

$$\underline{\text{H}_{3}\text{PO}_{4}} + \underline{\text{Ca}(\text{NO}_{3})_{2}} \rightarrow \underline{\text{Ca}_{3}(\text{PO}_{4})_{2}} + \underline{\text{HNO}_{3}}$$

Fundamental Constants

Name	Symbol	Value
Speed of light in a vacuum	с	3.00 ×108 m/s
Magnitude of charge of electron	е	1.602×10 ⁻¹⁹ C
Planck's constant	h	6.626×10-34 J·s
Boltzmann constant	k	1.381×10 ⁻²³ J/K
Avogadro's number	N_A	6.022×10 ²³ particles/mol
Gas constant, SI	R	8.314 L·kPa/mol·K
Gas constant	R	0.08206 L·atm/mol·K
Mass of electron	$m_{\rm e}$	9.109×10 ⁻³¹ kg
Mass of proton	m_p	1.673×10 ⁻²⁷ kg
Mass of neutron	m_n	1.675×10-27 kg
Faraday constant	♂ or F	96 485 C/mol e-

International System (SI) Units

Physical Quantity	Name of Unit	Symbol
	base units	
Length (I)	Meter	m
Mass (m)	Kilogram	kg
Time (t)	Second	s
Temperature (T)	Kelvin	K
Electric Current (I)	Ampere	Α
Luminous Intensity (φ)	Candela	cd
Amount of Substance	Mole	mol
	derived units	
Area (A)	square meter	m ²
Volume (V)	cubic meter	m ³
Frequency (v)	Hertz	Hz [s-1]
Speed, velocity (v)	meter per second	m/s
Force (F)	Newton	N [kg·m/s²]
Pressure (P)	Pascal	Pa [N/m²]

Common SI Prefixes

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10^{12}	tera	T	10 ⁻²	centi	С
10^{9}	giga	G	10^{-3}	milli	m
10^{6}	mega	M	10-6	micro	μ
10^{3}	kilo	k	10-9	nano	n
			10^{-12}	pico	p
			10 ⁻¹⁵	femto	f

hydrogen phosphate $\frac{1}{4}$ Pocyanic ions oxalate $\frac{C_2O_4^{2-}}{4}$ perchlorate $\frac{C_2O_4^{2-}}{4}$ perchlorate $\frac{C_2O_4^{2-}}{4}$ periodate $\frac{IO_4^{-}}{4}$ permanganate $\frac{IO_4^{-}}{4}$ permanganate $\frac{IO_4^{-}}{4}$ peroxide $\frac{IO_4^{-}}{4}$ peroxide $\frac{IO_4^{-}}{4}$ atomic $\frac{IO_4^{-}}{4}$ ion number $\frac{IO_4^{-}}{4}$ charge	HSO ₃ phosphate PO_4^{3-} symbol in SO ₄ sulfate SO_4^{2-} sulfite SO_3^{2-} 1.3	hosphate HPO_4^2 thiosulfate $S_2O_3^{2-}$ thiosulfate $S_2O_3^{2-}$ boron carbon nitride oxide fluoride NO_2^- ammonium NH_4^+ 13 14 15 16 17 11	SIO4 hydronium H ₃ O AI ³⁺ Si P ³⁻ S ²⁻ CI ⁻ 8 9 10 11 12 aluminum silicon phosphide sulfide chloride	26 Fe3+ 27 Co2+ 28 Ni2+ 29 Cu2+ 30 31 32 33 34 35 iron (III) cobalt (II) nickel (II) copper (II) Zn2+ Ga3+ Ge4+ As3- Se2- Br- F.2+ C.3+ Ni3+ C.+ As3- Se2- Br-	Cobalt (III) Cobalt (III) Copalt (III) Copa	Ru^{4+} rhodium Pd^{4+} silver cadmium indium Sn^{2+} Sb^{5+} telluride iodide x ruthenium(IV) antimony(V) antimony(V) antimony(V)	$^{\prime}$ 5+ $^{\prime}$ Re $^{7+}$ Os $^{4+}$ Ir $^{4+}$ platinum(IV) gold (III) mercury (II) thallium (II) lead (II) bismuth(III) polonium(III) apold (III) mercury (II) thallium (III) lead (IV) bismuth(III) polonium(IV) and $^{\prime}$ Ratatide radon platinum(III) gold (IV) mercury (IV) thallium(IIII) lead (IV) bismuth(V) polonium(IV)	61 62 c3+ 64 65 66 67 68 69 70 v. 3+ 71
dihydrogen phosphate H ₂ PO ₄ -hydrogen carbonate HCO ₃ -hydrogen oxalate HC ₂ O ₄ -hydrogen sulfate HSO ₄ -	HS- HSO ₃ OH- CIO-	ohosphate	SIO	26 Fe ³⁺ 27 cob	iron (II) cot 44 Ru3+ 45 ruthenium(III)	technitium Ru ⁴⁺ rruthenium(IV)	Re ⁷⁺ Os ⁴⁺ iri	62
arsenate CH_3COO^- arsenite AsO_3^{3-} benzoate $C_6H_5COO^-$	ate e e	te ate	3 4 5	22 T ₁ 4+ 23 V ₃ + 24 titanium (IV) vanadium(III) chro	scandium (III) vanadium (V) chromium (III) manganese(IV) 39 40 41 Nb5+ 42 43 43 43 45+ 7r4+ niobium (V) Mo6+ Tc7+	zirconium Nb3+	La ³⁺ Hf ⁴⁺ Ta ⁵⁺ Ianthanum hafnium tantalum tun	39 Ac ³⁺ 58 59
	1 H ⁺ hydrogen 2	4 B bery	Na ⁺ Mg ²⁺ dium magnesium		37 38 39 Rb ⁺ Sr ²⁺	vidium strontium y	CS+ Ba ²⁺ Licesium barium lantt	87 88 89 Fr+ Ra2+ A francium radium actii actii

58	59	09	61	62 cm3+ 63 c3+ 64	63 53+		65	99	29	89	69	70 Vh3+ 71	71
Ce ³⁺	Ce ³⁺ Pr ³⁺	Nd ³⁺ Pm	3+	3+ samarium(III)	europium (III)	Gd ³⁺	Tb ³⁺	Gd ³⁺ Tb ³⁺ Dy ³⁺ Ho ³⁺ Er ³⁺	Ho ³⁺	Er ³⁺	Tm ³⁺	Tm ³⁺ ytterbium(III) Lu ³⁺	Lu ³⁺
cerium	praseodymium	neodymium	promethium	thium Sm ²⁺ Eu ²⁺	Eu ²⁺	ga	terbium	dysprosium	holmium	erbium	thulium	Vb^{2+}	lutetium
				samarium(II)	europium (II)							ytterbium(II)	
06	91 D ₃ 5+ 92	92 116+ 93		94 D. 4+ 95 Am3+ 96	95 Am3+	96	97 pl.3+	86	66	100	101 NA 2+	102 N.2+	103
Th ⁴⁺		uranium (VI)	Np ⁵⁺	plutonium(IV)	americium(III)	Cm ³⁺	berkelium(III)	Cm ³⁺ berkelium(III) Cf ³⁺ Es ³⁺	Es3+	Fm ³⁺	3+ Fm ³⁺ mendelevium (III) nobelium (III) Lr ³⁺	nobelium(II)	obelium(II) Lr3+
thorium	Pa4+	U ⁴⁺	neptunium		Pu ⁶⁺ Am ⁴⁺		BK ⁴⁺ cal	californium	einsteinium	fermium	Md ³⁺	Md ³⁺ No ³⁺ la	lawrencium
	protactinium(IV)	uranium (IV)	0	plutonium(VI)	americium(IV)		berkelium(IV)				mendelevium (III)	nobelium(III)	

	U	1
•	Ē	ś
	0220	
	a)
	č	
	2	
	9	5
ì	Ī	۱
Ļ	1	J
	_	
	Ž	2
:	7	Ξ
Ī	27 72	_
٦	Ħ	=
	()
	a	١
-	0	2
-	2	2
	a	7
ŀ		_
٠		_
	C	٥
:	=	=
	١	2
	Ç)
Ī	Z	Ξ
	a)
٢		
٠	4	-
	a)
	2	2
ĩ	2	-
ſ		

Helium 2 2 Helium 4.00	Neon 10 Neon 20.18	Argon 18 Ar 39.95	Krypton 36 Kr 83.80	Xenon 54 Xe 131.29	Radon 86 RN (222.02)	Oganesson 118 Og (294)
11	Fluorine 9	Chlorine 17 CI 35.45	Bromine 35 Br 79.90	53 — — — — — — — — — — — — — — — — — — —	Astatine 85 At (209.99)	Tennessine 117 TS (294)
91	0xygen 8	Sulfur 16 S 32.07	Selenium 34 Se 78.96	Tellurium 52 Te 127.60	Polonium 84 Po (208.98)	Livermorium 116 Lv (293)
15	Nitrogen 7 N N N N N N N N N N N N N N N N N N	Phosphorus 15 P 30.97	As 74.92	Antimony 51 Sb 121.76	83 83 Bi 208.98	Moscovium 115 Mc (288.19)
4	C Carbon 12.01	Silicon 14 Si 28.09	Germanium 32 Ge 72.61	So Sn 118.71	Pb 207.20	Flerovium 114 Fl (289.19)
13	5 B 10.81	Aluminum 13 Al 26.98	Gallium 31 Ga 69.72	114.82	Thallium 81 71 204.38	113 113 Nh (284.18)
#	Avg. Mass	12	Zne 30 Zn 65.39	Cadmium 48 Cd 112.41	80 80 Hg 200.59	Copemicium 112 Ch (285.17)
Atomic #		=	Copper 29 Cu 63.55	Ag 107.87	79 79 Au 196.97	Roegentium 111 Rg (280.16)
ercury 80 ←	⊓9 200.59 ←	10	Nickel 28 Ni Ni Ni Ni Ni Ni Ni Ni	Palladium 46 46 Pd 106.42	Platinum 78 Pt Pt 195.08	Dsmstadtium 110 Ds (281.16)
→ Mercury	200	െ	Cobalt 27 Co 58.93	Rhodium 45 Rh 102.91	Iridium 77	Meibreium 109 Mt (276.15)
	5	80	Fe 55.85	Ruthenium 44 Ru 101.07	Osmium 76 OS 190.23	Hassium 108 Hs (277.15)
Element name-	Ô	7	Manganese 25 Mn 54.94	Technetium 43	Rhenium 75 Re 186.21	Bohrium 107 Bh (270)
ă		9	Cr Cr 52.00	Molybdenum 42 Mo 95.94	Tungsten 74 74 W 183.84	Seaborgium 106 Sg (271.13)
o		5	Vanadium 23 V V 50.94	Niobium 41 NB 92.91	Tantalum 73 73 78 78 78 78 78 78 78 78 78 78 78 78 78	Dubnium 105 Db (268.13)
Average relative masses are rounded to two decimal places.		4	7ttanium 22 Ti 47.88	Ziroonium 40 Zr 91.22	Hafrium 72 Hf 178.49	Rutherfordium 104 Rf (265.12)
Average relative are rounded to decimal places.		ю	Scandium 21 SC 44.96	39 × × × × × × × × × × × × × × × × × × ×	Lutetium 71 Lu 174.97	Lawrencium 103 Lr (262.11)
				T	57-70	89-102
2	Be 9.01	Magnesium 12 Mg 24.31	Calcium 20 Ca 40.08	Strontium 38 38 Sr 87.62	Barium 56 Ba 137.33	Radium 88 88 Radium (226.03)
Hydrogen 1.01	Lithium 3 3 6.94	Sodium 111 Na 22.99	Potassium 19 K 39.10	Rubidium 37 Rb 85.47	Cesium 55 CS 132.91	Francium 87 Fr (223.02)

*lanthanides	Lanthanum 57 La 138.91	Cerium 58 Ce 140.12	Praseodymium 59 Pr 140.91	Neodymium 60 Nd 144.24	Promethium 61 Pm (145)	Samarium 62 Sm 150.36	63 63 Eu 151.97	Gadolinium 64 Gd 157.25	Terbium 65 Tb 158.93	Dysprosium 66 Dy 162.50	Holmium 67 Ho 164.93	Erbium 68 Er 167.26	Thullum 69 Tm 168.93	Yterbium 70 Yb 173.05
**actinides	Actinium 89 AC (227.03)	Thorium 90 Th 232.04	Protactinium 91 Pa 231.04	Uranium 92 U 238.03	Neptunium 93 Np (237.05)	Plutonium 94 Pu (244.06)	Ameridum 95 Am (243.06)	Curium 96 Cm (247.07)	Berkelum 97 BK (247.07)	Californium 98 Cf (251.08)	Einsteinium 99 ES (252.08)	Femium 100 Fm (257.10)	Mendelevium 101 Md (258.10)	Nobelium 102 No (259.10)