CHEMISTRY 40S

The Alchemists cookbook

UNIT 3 - CHEMICAL EQUILIBRIUM

NAME: \qquad

It is expected that the activities in this book are completed as they are performed in class. This book will be collected at the end of the unit and a mark will be given.

LET'S GET STARTED!

By the end of this unit, you should be able to:
\checkmark Explain the concept of equilibrium as it relates to physical and chemical systems.
\checkmark Use an ICE table to determine equilibrium concentrations of reactants and products from initial concentrations.
\checkmark Interpret and sketch concentration vs time graphs of reactions proceeding towards equilibrium.
\checkmark Write equilibrium expressions from a balanced chemical equation.
\checkmark Calculate the equilibrium constant of a reaction from initial concentrations and one final concentration using an ICE table.
\checkmark Use the value of an equilibrium constant (K) to explain how far a system at equilibrium has gone towards completion.
\checkmark Use Le Chatelier's Principle to predict and explain shifts in equilibrium systems.
\checkmark Perform a lab activity demonstrating Le Chatelier's principle.
\checkmark Describe the Haber Process as a practical application of Le Chatelier's principle.
\checkmark Calculate the equilibrium concentrations of reactants and products from the initial concentrations and the K value for the reaction.
\checkmark Use the reaction quotient (Q) to predict whether a reaction is at equilibrium or not and how it will shift to reach equilibrium.
\checkmark Write solubility product (Ksp) expressions from balanced dissociation equations of salts with low solubility.
\checkmark Calculate Ksp from the solubility of a saturated salt solution using an ICE table.
\checkmark Calculate the solubility of a salt from the Ksp value using an ICE table.
\checkmark Describe the effect of a common ion on the solubility of a salt.
\checkmark Perform a lab activity to determine the Ksp of a salt with low solubility.

This unit will take approximately 20 lessons to complete and will comprise 18% of your mark in this class.

Fantasy Island was a 70 's television drama. In the show, the island was run by the mysterious Mr. Roarke and his assistant Tattoo. People from all walks of life would come and live out their fantasies, albeit for a price. In many episodes, people would find true love on the island, while in others, struggling couples would split up. The goal of this activity is for you to explore how an equilibrium can be established in a human population on Equilibrium Island (a cheap knock-off of Fantasy Island). You will be dealing with populations of humans, but all the general ideas can be carried forward to deal with populations of molecules.

Equilibrium Island is a small semi-tropical island out in the Pacific, and onto this island, we put one thousand single men and one thousand single women (assume all are heterosexual for the simplicity of our calculations). There is a single office on the island that performs marriages, and a single office that conducts no-fault divorces. Both offices can handle up to 600 couples per day. We will assume that the people on this island are very impulsive and make major decisions (such as whether to get married or divorced) on a whim. Basically, if a single gal meets a single guy who seems compatible, they'll run off to the marriage office in a jif, whereas a married couple that has a couple of arguments will be headed for the divorce office. There is a law that you can't get married and divorced on the same day (it's known as the "One Day Cool Off" law). Both offices are closed between 11:00 pm and 7:00 am.

QUESTIONS:

1. Let us assume that the Islanders are pretty friendly people, so that $\mathbf{6 0 \%}$ of the single people will get married on a given day. Another way of looking at it is that if you are single, you have a 60% chance of getting married that day.
a. How many weddings will take place on the first day?
b. How many weddings will take place on the second day? Hint: it's not the same answer as (a) because there are fewer single people out there to get married! Only $\mathbf{6 0 \%}$ of the SINGLE people will get married. . .
2. On the first day, there will be no divorces, but starting on the second day, couples will be breaking up. Let's assume that $\mathbf{2 0 \%}$ of the couples will break up on a given day. That is, if you started the day married, you will have a 20% chance of ending the day single.
a. How many DIVORCES will there be on the second day? Hint: this number will be $\mathbf{2 0 \%}$ of the COUPLES. That means you have to calculate 20% of $600 .$. .
b. At the end of the second day, there will be $\mathbf{7 2 0}$ COUPLES on the island. Explain (with the use of mathematics) why there will be 720 couples at the end of the second day. Note: some of these couples will be "brand new" while others will be "leftovers" from day one.
3. Complete the table shown below. Starting on day 4, you will get decimal values. You should use these decimal values up until the last line ("Equilibrium") in which you should round to the nearest whole number. Note: I have inserted some numbers into the table. Don't try to change these numbers-instead use them as check points to assist you in getting the right answers for the other blanks in the table.

Day	Number of COUPLES at the start of the day	Number of SINGLE women (or single men) at the start of the day	Number of additional couples formed on that day (i.e. number of weddings) 60\% OF SINGLES GET MARRIED	Number of couples that break up (i.e. number of divorces)	Number of couples at the end of the day
1	0	1000		0	
2	600	400			
3					744
4 use decimal values here!					
5					
6					
7					
Equilibrium (round the value for \# of couples to a WHOLE number)					

4. As you have seen in the table, after ~ 7 days, the number of couples on the island will reach a STEADY DAY-TO-DAY VALUE (for example 750 couples today, 750 couples tomorrow, 750 couples the day after, etc.). Explain why the number of couples reaches a "plateau" that remains stable day after day. Note: this is asking you to define how an EQUILIBRIUM works.

ACTIVITY \#2 - ANALYZING EQUILIBRIUM

1. When dinitrogen tetroxide gas, $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$, is placed in a sealed container at $100^{\circ} \mathrm{C}$, it decomposes into nitrogen dioxide gas, $\mathrm{NO}_{2}(\mathrm{~g})$, according to the following balanced equation:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})
$$

A lab technician places 0.25 mol of dinitrogen tetroxide in a 1.0 L closed container. At equilibrium, the concentration of nitrogen dioxide is $0.25 \mathrm{~mol} / \mathrm{L}$. Use an ICE table to determine the equilibrium concentration of dinitrogen tetroxide.
2. At $35^{\circ} \mathrm{C}, 3.00 \mathrm{~mol}$ of pure nitrosyl chloride gas, $\mathrm{NOCl}(\mathrm{g})$, is contained in a sealed 3.00 L flask. The nitrosyl chloride gas decomposes into nitrogen monoxide gas, $\mathrm{NO}(\mathrm{g})$, and chlorine gas, $\mathrm{Cl}_{2}(\mathrm{~g})$, until equilibrium is reached.

$$
2 \mathrm{NOCl}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

At equilibrium, the concentration of nitrogen monoxide is $0.043 \mathrm{~mol} / \mathrm{L}$. Use an ICE table to determine the equilibrium concentrations of each chemical.
3. A chemist places 2.00 mol of ethene gas, $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$, and 1.25 mol of bromine gas, $\mathrm{Br}_{2}(\mathrm{~g})$, in a sealed 0.500 L container. The graph to the right shows the concentration of ethen gas over time. The balanced chemical equation for the reaction is as follows:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \leftrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}(\mathrm{~g})
$$

a) Determine the equilibrium concentrations of all three chemicals in the reaction.
b) Sketch lines on the graph for the change in concentration of bromine gas and $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}(\mathrm{~g})$ over time.
4. Sulphuric acid is an important industrial chemical that is usually produced by a series of chemical reaction. One of these reactions involves an equilibrium between gaseous sulphur dioxide, oxygen, and sulphur trioxide.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

If 2.5 mol of $\mathrm{SO}_{2}(\mathrm{~g})$ and 2.0 mol of $\mathrm{O}_{2}(\mathrm{~g})$ are placed in a 1.0 L sealed container aand allowed to reach equilibrium, 0.75 mol of sulphur dioxide will remain. Use an ICE table to determine the concentration of the other gases at equilibrium.
5. Phosphorus pentachloride, $\mathrm{PCl}_{5}(\mathrm{~g})$, will decompose to phosphorus trichloride, $\mathrm{PCl}_{3}(\mathrm{~g})$, and chlorine gas, $\mathrm{Cl}_{2}(\mathrm{~g})$, at $160^{\circ} \mathrm{C}$. In a sealed vessel, the reaction will proceed to equilibrium:

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

A chemist places 3.00 mol of $\mathrm{PCl}_{5}(\mathrm{~g})$ into a sealed 1.50 L flask at $160^{\circ} \mathrm{C}$. After 7.0 minutes, equilibrium is reached, and he observes there is 0.300 mol of $\mathrm{PCl}_{3}(\mathrm{~g})$ and some chlorine gas.
a) Calculate the equilibrium concentrations of $\mathrm{PCl}_{5}(\mathrm{~g})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$.
b) Create and sketch a graph on the grid below showing the changes in concentration over time of all three chemicals involved in the reaction.

A chemist was studying the decomposition of methanol, CH 3 OH at a high temperature. She placed 1.0 mol of methanol into a 5.0-L flask and allowed it to decompose for 30 min at the high temperature. After 20 min , the concentration of CH 3 OH had fallen to $0.050-\mathrm{M}$ where it remained for the remainder of the experiment.

$$
\mathrm{CH} 3 \mathrm{OH}(\mathrm{~g}) \leftrightarrow \mathrm{CO}(\mathrm{~g})+2 \mathrm{H} 2(\mathrm{~g})
$$

1. On a separate piece of paper, create an ICE table to determine the equilibrium concentrations of each of the gases involved in the reaction. List the equilibrium values below:
\qquad $[\mathrm{CO}(\mathrm{g})]=$ \qquad $\left[\mathrm{H}_{2}(\mathrm{~g})\right]=$ \qquad
2. Sketch a concentration vs time graph that would accurately reflect the data from the experiment above. Show how the concentrations of all three species in the reaction would have changed over the 30 min interval.

3. Write the equilibrium (K) expression for the reaction.
4. Based on the information from your graph above, calculate \mathbf{K} for the experiment. Is this reaction reactant or product favoured.

A chemist was studying the reaction below at room temperature:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

She placed 3.0 mol of SO 2 and 2.0 mol of O 2 into a $5.0-\mathrm{L}$ flask. During the reaction, she measured the change in [SO3] over time and obtained the following graph:

1. At what time does it appear that the system reached equilibrium? How can you tell?
2. On a separate piece of paper, create an ICE table to determine the equilibrium concentrations of each of the gases involved in the reaction. List the equilibrium values below:
$\left[\mathrm{SO}_{2}(\mathrm{~g})\right]=$ \qquad $\left[\mathrm{O}_{2}(\mathrm{~g})\right]=$ \qquad $\left[\mathrm{SO}_{3}(\mathrm{~g})\right]=$ \qquad
3. Sketch and label two curves on the graph above showing the change in [SO 2] and [O 2] during the experiment.
4. Write the K expression for the reaction based on the balanced equation and calculate its value at the temperature for this experiment. Is this reaction reactant or product favoured? Why?
5. Write equilibrium expressions for each of the following reactions:

$$
\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \quad \mathrm{Ni}(\mathrm{~s})+4 \mathrm{CO}(\mathrm{~g}) \rightleftharpoons \mathrm{Ni}(\mathrm{CO})_{4}(\mathrm{~g})
$$

$$
5 \mathrm{CO}(\mathrm{~g})+\mathrm{I}_{2} \mathrm{O}_{5}(\mathrm{~s}) \rightleftharpoons \mathrm{I}_{2}(\mathrm{~g})+5 \mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}(\mathrm{aq}) \rightleftharpoons \mathrm{CaCO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\mathrm{AgCl}(\mathrm{~s}) \rightleftharpoons \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

6. In the following system:

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq}) \leftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})
$$

The K value for this reaction is 4.10 at $25^{\circ} \mathrm{C}$. If the equilibrium concentrations of $\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=$ $0.210 \mathrm{~mol} / \mathrm{L},\left[\mathrm{H}_{2} \mathrm{O}\right]=0.00850 \mathrm{~mol} / \mathrm{L}$ and $\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]=0.910 \mathrm{~mol} / \mathrm{L}$, what is the $\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]$?

ACTIVITY \#4 - DEMO LAB: OOOHHH...PRETTY COLOURS!

In this activity, you will be introduced to Le Chatelier's Principle. Simply put, the principle states that anytime a system at equilibrium is disturbed, the reaction adjusts in such a way as to counteract the disturbance and reestablish equilibrium. You will investigate this by observing the changes in colour of a complex equilibrium system.

Safety:

Working with chromate and dichromate compounds always requires the user to wear gloves and eye protection. If you get any solution on your skin, wash the area with water immediately.

Pre-Lab:

Chromate ion has the formula \qquad and has the color of \qquad
Dichromate ion has the formula \qquad and has the color of \qquad

Chemical equation showing the equilibrium reaction is:
\square
We will apply the following chemical stresses to this reaction by doing the following:
a) Addition of $\mathrm{H}^{+}(\mathrm{aq})$ by adding a strong acid. Remember...strong acids fully ionize to produce solutions with a high concentration of $\mathrm{H}^{+}(\mathrm{aq})$
b) Removal of $\mathrm{H}^{+}(\mathrm{aq})$ by adding $\mathrm{OH}^{-}(\mathrm{aq})$. Remember... $\mathrm{H}^{+}(\mathrm{aq})$ reacts with $\mathrm{OH}^{-}(\mathrm{aq})$ to form liquid water according the reaction below.
\square
Observations:

1. Addition of HCl :
2. Addition of NaOH :

Conclusions:

STRESS	Colour Change	Equilibrium Shifted...
Add H^{+}		
Add OH^{-}		

I think that the addition of $\mathrm{H}^{+}(\mathrm{aq})$ to the equilibrium caused the reaction to shift the way it did because:

I think that the addition of $\mathrm{OH}^{-}(\mathrm{aq})$ to the equilibrium caused the reaction to shift the way it did because:

1. Describe the changes that occur in the moments after each stress is applied to the equilibrium. Use an up arrow to show increase, a down arrow to show decrease, and left and right arrows to signify a rate shift in each direction.
a. $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{NH}_{3(\mathrm{~g})}+92 \mathrm{KJ}$

Initial Stress	Gradual Change Over Time				
	$\left[\mathrm{N}_{2}\right]$	$\left[\mathrm{H}_{2}\right]$	$\left[\mathrm{NH}_{3}\right]$	Shifts	Creates More
$\left[\mathrm{N}_{2}\right]$ Increased					
$\left[\mathrm{H}_{2}\right]$ is increased					
$\left[\mathrm{NH}_{3}\right]$ is increased					
Temp is increased					
$\left[\mathrm{N}_{2}\right]$ is Decreased					
$\left[\mathrm{H}_{2}\right]$ is Decreased					
$\left[\mathrm{NH}_{3}\right]$ is decreased					
Temp is Decreased					
A catalyst is added					
He (g) is added.					

b. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightharpoons \quad 2 \mathrm{NO}_{2(\mathrm{~g})} \quad \Delta \mathrm{H}=+92 \mathrm{KJ}$

INITIAL STRESS	GRADUAL CHANGE OVER TIME			
	$\left[\mathbf{N}_{2} \mathrm{O}_{4}\right]$	[NO2]	Shifts	Creates More
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ is increased				
$\left[\mathrm{NO}_{2}\right]$ is increased				
Temp is increased				
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ is decreased				
$\left[\mathrm{H}_{2}\right]$ is decreased				
$\left[\mathrm{NO}_{2}\right]$ is decreased				
Temp is decreased				

c) $4 \mathrm{HCl}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightharpoons 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}+2 \mathrm{Cl}_{2(\mathrm{~g})}+98 \mathrm{KJ}$

Initial Stress	$\left[\mathrm{O}_{2}\right]$	$\left[\mathbf{H}_{2} \mathbf{O}\right]$	$[\mathrm{HCl}]$	Shifts	Creates More
$\left[\mathrm{H}_{2} \mathrm{O}\right]$ is increased					
$\left[\mathrm{O}_{2}\right]$ is increased					
Temp is increased					
$\left[\mathrm{H}_{2} \mathrm{O}\right]$ is decreased					
$[\mathrm{HCl}]$ is decreased					
$\left[\mathrm{O}_{2}\right]$ is decreased					
Temp is decreased					
A catalyst is added					

2. State the direction in which each of the following equilibrium systems would be shifted upon the application of the following stress listed beside the equation.
a. $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}+$ energy decrease temperature
b. $\mathrm{C}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}+$ energy $\leftrightarrow 2 \mathrm{CO}_{(\mathrm{g})}$
c. $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
d. $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})}$
e. $2 \mathrm{NOBr}_{(\mathrm{g})} \leftrightarrow 2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{Br}_{2(\mathrm{~g})}$
f. $3 \mathrm{Fe}_{(\mathrm{s})}+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}+4 \mathrm{H}_{2(\mathrm{~g})} \quad \operatorname{add} \mathrm{Fe}_{(\mathrm{s})}$
g. $2 \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}$
h. $\mathrm{CaCO}_{3(\mathrm{~s})} \leftrightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
i. $\quad \mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} 2 \mathrm{NH}_{3(\mathrm{~g})}$
increase temperature
increase total pressure
decrease total pressure
decrease total pressure
add catalyst
remove $\mathrm{CO}_{2(\mathrm{~g})}$
increase $\left[\mathrm{H}_{\mathrm{eg})}\right]$
3. Consider the following equilibrium system:

$$
3 \quad \mathrm{H}_{2(\mathrm{~g})}+\mathrm{N}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}+\text { Heat. }
$$

State what effect each of the following will have on this system:
a. More N_{2} is added to the system
b. Some NH_{3} is removed from the system
c. The temperature is increased
d. The volume of the vessel is increased
e. A catalyst was added
f. An inert gas was added.
4. Consider the following equilibrium system

$$
H_{2(g)}+I_{2(g)} \leftrightarrow 2 H I_{(g)}
$$

State what effect each of the following will have on this system in terms of shifting.
a. The volume of the vessel is increased
b. The pressure is increased
c. A catalyst is added
5. Consider the following equilibrium system:

$$
3 \mathrm{Fe}_{(\mathrm{s})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4(\mathrm{~s})}+4 \mathrm{H}_{2(\mathrm{~g})}
$$

State what effect each of the following will have on this system in terms of shifting.
a) The volume of the vessel is decreased
b) The pressure is decreased
c) More Fe is added to the system
d) Some $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is removed from the system
e) A catalyst is added to the system
6. Consider the following equilibrium:

$$
2 \mathrm{NO}_{(g)}+\mathrm{Br}_{2(\mathrm{~g})}+\text { energy } \leftrightarrow 2 \mathrm{NOBr}_{(\mathrm{g})}
$$

State what affect each of the following will have on this system in terms of shifting.
a) The volume of the vessel is increased
b) The pressure is decreased
c) More Br_{2} is added to the system
d) Some NO is removed from the system
e) A catalyst is added to the system

$$
2 \mathrm{CO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+\text { energy }
$$

A) Some CO was added to the system and a new equilibrium was established.

7. Compare to the original system, the rates of the forward and reverse reactions of the new equilibrium.
a. Forward Rate has
b. Reverse Rate has
8. Compared to the original concentrations, after the shift, have the new concentrations increased or decreased?
a. [CO]
b. $\left[\mathrm{O}_{2}\right]$
c. $\left[\mathrm{CO}_{2}\right]$
9. Did the equilibrium shift favour the formation of reactants or products?
B) The volume of the container was decreased and a new equilibrium was established.
10. Compared to the original concentrations, after the shift, have the new concentrations increased or decreased?
a. [CO]
b. $\left[\mathrm{O}_{2}\right]$
c. $\left[\mathrm{CO}_{2}\right]$
11. Did the equilibrium shift favour the formation of reactants or products?

Background:

Le Chatelier's Principle states that when a chemical system at equilibrium is disturbed by the application of a stress (i.e. a change in a system property), the system adjusts in such a way that minimizes and counteracts the stress, and a new equilibrium state is attained. In this activity, predictions made using Le Chatelier's Principle will be tested for a specific chemical equilibrium system, as shown below:

$$
\underset{\text { (blue) }}{\mathrm{CoCl}_{4}^{2-}(\mathrm{aq})}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftrightarrow \underset{\text { (pink) }}{\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}(\mathrm{aq})}+4 \mathrm{Cl}^{-}(\mathrm{aq})+\text { heat }
$$

Problem:

1. What effect does changing the temperature have on the state of a chemical equilibrium system?
2. What effect does changing the concentration of chemicals have on the state of a chemical equilibrium system?

Predictions:

Complete predictions for each of the applied stresses. In your explanation, speak in terms of rates of reaction forward and backwards and effective collisions.

1. According to Le Chatelier's Principle if the system is cooled, then the colour will become
\qquad . This signifies that the equilibrium has shifted \qquad to reestablish equilibrium. This shift will happen because \qquad
\qquad
\qquad
\qquad .
2. According to Le Chatelier's Principle if the system is heated, then the colour will become
\qquad . This signifies that the equilibrium has shifted \qquad to reestablish equilibrium. This shift will happen because \qquad
\qquad
\qquad
\qquad .
3. According to Le Chatelier's Principle if sodium chloride is added, then the colour will become
\qquad . This signifies that the equilibrium has shifted \qquad to reestablish equilibrium. This shift will happen because \qquad
\qquad
\qquad
\qquad
4. According to Le Chatelier's Principle if silver nitrate is added, then the colour will become
\qquad . This signifies that the equilibrium has shifted \qquad to reestablish equilibrium. This shift will happen because \qquad
\qquad
\qquad
\qquad .

Procedure:

1. Fill one of your 250 mL beakers $1 / 2$ full with tap water and place it on your hot plate. Turn the hot plate to high. Congratulations! You've just made a hot water bath. You will need this later.
2. Fill your second 250 mL beaker $1 / 2$ full with tap water. Take it to the buffet table and place a handful of ice into it. Boom...ice bath!
3. Take your 150 mL beaker from your bench to the buffet table. Pour about 100 mL of $\mathrm{CoCl} 2.6 \mathrm{H} 2 \mathrm{O}(\mathrm{aq})$ into it and return to your bench.
4. Fill each of your 5 test tubes about $1 / 2$ full of the solution. Set one of the test tubes aside as your control group.
5. Place your first test tube into the hot water bath and allow it to sit for a few minutes. Make observations. Do not allow the test tube to reach a boil!
6. Place your second test tube into the ice bath and allow it to sit for a few minutes. Make observations.
7. Come to the buffet table and obtain two cupcake wrappers, one containing sodium chloride crystals and the other containing silver nitrate crystals. Take them back to your bench. Don't get them mixed up!
8. Pour the sodium chloride crystals into your third test tube. Agitate gently to allow dissolving. Make observations.
9. Pour the silver nitrate crystals into your fourth test tube. Agitate gently to allow dissolving. Make observations.
10. Dispose of all chemicals in the waste beaker provided.

Observations:

Stress Applied	Colour Change Observed	Prediction Confirmed?
Cooled		
Heated		
Sodium Chloride Added		
Silver Nitrate Added		

Conclusions:

Did your observations match your predictions? If not, correct your original prediction with a modified version based on what you observed.

ACTIVITY \#7 - SOLVING EQUILIBRIUM PROBLEMS PART 2

1. In a 1.00 L flask, 0.150 mol of $\mathrm{SO}_{3}(\mathrm{~g})$ and $\mathrm{NO}(\mathrm{g})$ are sealed at STP and allowed to reach equilibrium according to the reaction below. The equilibrium constant (K) for this reaction at this temperature and pressure is 0.50

$$
\mathrm{SO}_{3}+\mathrm{NO} \leftrightarrow \mathrm{NO}_{2}+\mathrm{SO}_{2}
$$

a. Determine the equilibrium concentrations of each species using an ICE table.

b. Does this reaction favour the reactants or the products? Why?
2. Gaseous phosphorus pentachloride is heated, it decomposes into phosphorus trichloride and chlorine gas. The K value for this reaction at this specific temperature is $1.00 \times 10^{-5} .2 .00 \mathrm{~mol} / \mathrm{L}$ of PCl_{5} are placed in a flask and allowed to reach equilibrium according to the reaction below.

$$
\mathrm{PCl}_{5(\mathrm{~g})} \leftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

a. Can you apply the "100 Rule" in this case and ignore "-x" in your ICE table? Justify you answer.
b. Determine the equilibrium concentrations of each substance using an ICE table.
3. A 1.000 L flask is filled with 1.000 mol of H_{2} and I_{2} at $448^{\circ} \mathrm{C}$. The value of the equilibrium constant at this temperature is 2.5 . What are the equilibrium concentrations for each of the species?

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HI}(\mathrm{~g})
$$

a. Can you apply the "100 Rule" in this case and ignore "-x" in your ICE table? Justify you answer.
b. Determine the equilibrium concentrations of each substance using an ICE table.
4. Suppose that hydrogen fluoride gas, $\mathrm{HF}(\mathrm{g})$ is synthesized by combining 3.000 mol of hydrogen gas, $\mathrm{H}_{2}(\mathrm{~g})$, with 6.000 mol fluorine gas, $\mathrm{F}_{2}(\mathrm{~g})$, in a 3.000 L sealed flask. Assume that the equilibrium constant for this reaction at this temperature is 1.15×10^{2}.

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{HF}(\mathrm{~g}) \quad \Delta \mathrm{H}=-50.0 \mathrm{~kJ}
$$

a. What are the concentrations of each gas at equilibrium?
b. Does this reaction favour the reactants or the products? Why?
c. What stresses could you apply to this reaction to increase the $[\mathrm{HF}(\mathrm{g})]$ produced?

1. Consider the following reaction:

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g}) \quad \mathrm{K}=3900
$$

a) Write the equilibrium expression for this reaction.
b) Write the reaction quotient (Q) expression for this reaction.
c) A student starts this reaction with $0.150 \mathrm{M} \mathrm{SO}_{2}, 0.150 \mathrm{M} \mathrm{O}_{2}$, and $2.00 \mathrm{M} \mathrm{SO}_{3}$. Predict the direction this reaction must shift to reach equilibrium. Show a calculation to justify your answer.
2. Consider the following reaction:

$$
2 \mathrm{HI}(\mathrm{~g}) \leftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \quad \mathrm{K}=0.25
$$

A reaction vessel initially contains $0.500 \mathrm{M} \mathrm{H}_{2}, 0.500 \mathrm{M} \mathrm{I}_{2}$, and 0.750 M HI .
a) Predict the direction the reaction must shift to reach equilibrium. Show a calculation to justify your answer.
b) From what you concluded in a), create an ICE table and calculate the equilibrium concentrations of each chemical species.
3. Use the following chemical equation to answer the following questions:

$$
\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})+\text { energy } \quad \mathrm{K}=6.01 \times 10^{-6} @ 500^{\circ} \mathrm{C}
$$

a) Circle the correct stress that would maximize the production of nitrogen dioxide, NO_{2}, in this reaction.

$\left[\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})\right]$	Increase	Decrease
$\left[\mathrm{NO}_{2}(\mathrm{~g})\right]$	Increase	Decrease
Temperature	Increase	Decrease
Volume of vessel	Increase	Decrease

b) If this reaction were started with $1.00 \times 10^{-3} \mathrm{M}$ of each substance, which direction would the reaction have to shift to reach equilibrium? Show a calculation to justify your answer.
c) Calculate the $\left[\mathrm{NO}_{2}\right]$ at equilibrium.
4. Carbon monoxide gas, $\mathrm{CO}(\mathrm{g})$, reacts with steam, $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, to produce carbon dioxide gas, $\mathrm{CO}_{2}(\mathrm{~g})$, and hydrogen, $\mathrm{H}_{2}(\mathrm{~g})$. At 700 K , this reaction has a K value of 5.10 . Calculate the equilibrium concentrations if 1.250 mol of each substance were initially placed in a 500.0 mL sealed flask and allowed to react.

1. Write the equilibrium expression for the following solubility equilibrium:

$$
\mathrm{MgCO}_{3}(\mathrm{~s}) \leftrightarrow \mathrm{Mg}^{2+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})
$$

2. Write the equilibrium expression for the solubility equilibrium of iron(II) hydroxide, $\mathrm{Fe}(\mathrm{OH})_{2}(\mathrm{~s})_{\text {. }}$.
3. Which of the following salts has the greater solubility, mercury(I) chloride or copper(I) chloride? How did you determine this?
4. In a saturated solution of calcium phosphate, $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{aq})$, at $25^{\circ} \mathrm{C}$, the concentrations of the calcium ions and the phosphate ions are $4.53 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$ and $3.02 \times 10^{-7} \mathrm{~mol} / \mathrm{L}$ respectively. Calculate the Ksp of calcium phosphate
5. Silver bromide has a solubility of $6.1 \times 10^{-2} \mathrm{~mol} / \mathrm{L}$ at $95^{\circ} \mathrm{C}$. Calculate the Ksp of silver bromide at this temperature.
6. 0.00243 g of $\mathrm{Fe}_{2}\left(\mathrm{CO}_{3}\right)_{3}$ is required to saturate 100.0 mL of solution. What is the Ksp value of iron(III) carbonate at this temperature?
7. Calculate the molar solubility (the molarity of the saturated solution) of silver iodide, $\operatorname{AgI}(\mathrm{s})$, at $25^{\circ} \mathrm{C}$. The Ksp of silver iodide at this temperature is 8.5×10^{-17}.
8. The Ksp of zinc hydroxide, $\mathrm{Zn}(\mathrm{OH})_{2}(\mathrm{~s})$, is 7.7×10^{-17} at $25^{\circ} \mathrm{C}$. What is the molar solubility of zinc hydroxide at this temperature?
9. Calculate the molar solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$ at $25^{\circ} \mathrm{C}$. Calculate the mass required to prepare 2.0 L of saturated iron(III) hydroxide solution.
10. The solubility of magnesium fluoride, $\mathrm{MgF}_{2}(\mathrm{~s})$, is $1.72 \times 10^{-3} \mathrm{~g} / 100 \mathrm{~mL}$ at $25^{\circ} \mathrm{C}$. What is the Ksp value for magnesium fluoride at this temperature?

ACTIVITY \#10 - LAB: SOLUBILITY PRODUCT CONSTANT (Ksp) FOR SILVER ACETATE

In a saturated solution, the ions in solution are in equilibrium with the solid. The rate at which ions are leaving the solid crystal is equal to the rate at which they are returning to the crystal. According to solubility rules, acetate salts are generally quite soluble. An exception to that is silver acetate which has only a moderate solubility in water. The purpose of this experiment is to determine the value of its solubility product constant, Ksp.

Procedure:

(Day 1)

1. Use a graduated cylinder to carefully measure 100.0 mL of a saturated silver acetate solution and record this in your observations. Pour the solution into a clean, dry 250 mL beaker.
2. Obtain about 30 cm of 16-gauge copper wire. Clean the surface of the wire with some steel wool and wind the wire into a loose coil around a test tube.
3. Find the mass of the copper coil to the nearest 0.01 g and record this mass in your observations. Place it into the beaker containing the saturated solution of silver acetate. Allow the system to stand overnight so all the silver ions will have an opportunity to react.
(Day 2)
4. Shake the silver crystals free from the copper wire into the beaker. Wash any adhering crystals into the beaker with a stream of distilled water from a water bottle. Finally, wash the wire in a stream of water from the tap. When the wire is dry, find its mass and record this in your observations.
5. Decant the solution off the silver crystals into another beaker and rinse them with distilled water.
6. Obtain a piece of filter paper and record its mass. Record this value in your observations.
7. Filter your silver crystals. Set your filter paper aside to dry overnight.
(Day 3)
8. Measure the mass of your filter paper and record this in your observations.

Observations:

Volume of Saturated Silver Acetate solution (mL)	
Mass of Copper Wire BEFORE Reaction (g)	
Mass of Filter Paper (g)	
Mass of Filter Paper + Silver Crystals (g)	
Mass of Copper Wire AFTER Reaction (g)	

1. Write the balanced chemical equation and the net ionic equation for the reaction that occurred between the saturated solution of silver acetate and the copper wire.
2. Calculate the mass of silver metal collected.
3. Calculate the moles of silver metal collected.
4. Use stoichiometry to calculate the moles of $\mathrm{Ag}+$ present in the saturated solution.
5. Determine the molarity of the $\mathrm{Ag}+$ in the saturated solution.
6. Write the dissociation equation for silver acetate dissolution. Create an ICE table and fill it in.
7. Write the Ksp expression for silver acetate and calculate Ksp based on the silver collected.

In the last activity, you used empirical evidence gathered in the lab to determine the solubility product constant (Ksp) of lead(II) chloride. Today, you are going to investigate the effect that adding a "common ion" (increasing the concentration of an ion already present in the saturated solution) has on the solubility of the solution.

Procedure and Observations:

	A	B	Result of mixing $A+B$	Explanation (according to Le Chatelier's principle)		
1	$\\| \begin{aligned} & 5 \mathrm{ml} \\ & \mathrm{PbCl}\end{aligned}$	$\\| \begin{aligned} & 2.5 \mathrm{ml} \\ & \text { saturated } \\ & \mathrm{NaCl}\end{aligned}$				
2	$\\| \begin{aligned} & 5 \mathrm{ml} \\ & \mathrm{PbCl}_{2} \end{aligned}$	$\\| \begin{aligned} & 2.5 \mathrm{ml} \\ & \text { saturated } \\ & \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\end{aligned}$				
3	$\\| \begin{aligned} & 5 \mathrm{ml} \\ & \mathrm{PbCl}_{2} \end{aligned}$	\\|f $\begin{aligned} & \text { A few } \\ & \text { crystals of } \\ & \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}\end{aligned}$				

Analysis:

1. Calculate the solubility of lead(II) chloride.

2. Calculate the solubility of lead(II) chloride upon the addition of 0.20 M sodium chloride to the solution.
3. What happens to the solubility of an ionic compound with the addition of a common ion?
4. Use your knowledge of equilibrium and Le Chatelier to explain your answer to the previous question.

ACTIVITY \#13 - UNIT TEST REVIEW

1. Write the equilibrium expressions for each of the following:
a) 2 Bread +1 Cheese +4 Ham $\leftrightarrow 1$ Sandwich
b) $\mathrm{F}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{FI}_{(\mathrm{g})}$
c) $\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \leftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}$
d) $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \leftrightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
e) $\mathrm{NaCl}(\mathrm{s}) \leftrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
f) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}) \leftrightarrow 3 \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{PO}_{4}{ }^{3-}(\mathrm{aq})$
2. Write the K expression in terms of concentration. Given the equilibrium concentrations, calculate the value of K . From the K value state whether each equilibrium is product-favored, reactant-favored, or fairly even ([products] \approx [reactants]).
a) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrows 2 \mathrm{NH}_{3}(\mathrm{~g})$

$$
\begin{array}{ll}
\text { At equilibrium: } & {\left[\mathrm{N}_{2}\right]=0.750 \underline{\mathrm{M}}} \\
& {\left[\mathrm{H}_{2}\right]=1.25 \underline{\mathrm{M}}} \\
& {\left[\mathrm{NH}_{3}\right]=0.025 \underline{\mathrm{M}}}
\end{array}
$$

b) $\mathrm{HF}(\mathrm{aq}) \leftrightarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{F}^{-}(\mathrm{aq})$

At equilibrium: $\quad[\mathrm{HF}]=0.250 \underline{\mathrm{M}}$
$\left[\mathrm{H}^{+}\right]=1.50 \underline{\mathrm{M}}$
$\left[\mathrm{F}^{-}\right]=1.25 \underline{\mathrm{M}}$
3. A closed system initially containing $1.5 \mathrm{~mol} / \mathrm{L} \mathrm{H} \mathrm{H}_{2}$ and $2.0 \mathrm{~mol} / \mathrm{L}_{2}$ at $448^{\circ} \mathrm{C}$ are allowed to reach equilibrium. Equilibrium is reached after 10 minutes and analysis shows the concentration of HI at this time to be $1.87 \mathrm{~mol} / \mathrm{L}$. Calculate the K for this reaction and sketch a concentration-time graph of the reaction for the first 20 minutes of the reaction.
4. During WWI, the Germans used a chemical process known as the Haber process that combined nitrogen and hydrogen from the air to create ammonia, which they used for explosives. Since then, this process has become the main method of creating fertilizer for agriculture. If 100 kg of nitrogen gas and 20 kg of hydrogen gas are added to a 300 L vat at SATP state and there is 50 kg of nitrogen left in the vat at equilibrium:
a. What mass of ammonia could be produced at equilibrium? (Hint...think stoichiometry)
b. What is the K for this reaction?
c. What changes could be made to the system to help increase the quantity of ammonia?
5. Use your knowledge of Le Chatelier's Principle to complete the following chart:

$\mathbf{2 N O _ { 2 } (\mathbf { g }) \rightarrow \mathbf { 1 N } \mathbf { 2 } \mathbf { O } (\mathbf { g })}$$\Delta \mathbf{H}=\mathbf{- 8 5} \mathbf{k J} / \mathbf{m o l}$ Stress Equilibrium Shift - Left or Right?			
[Products] Increase or Decrease?	[Reactants] Increase or Decrease?		
Remove $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$			
Increase Temperature			
Decrease Volume			

6. At $800^{\circ} \mathrm{C}$, the K value of the reaction below is 0.279

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightleftarrows \mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) .
$$

If 2.00 moles $\mathrm{CO}_{(\mathrm{g})}$ and 2.00 moles $\mathrm{H}_{2} \mathrm{O}{ }_{(\mathrm{g})}$ are initially placed in a 500 ml container and allowed to reach equilibrium, calculate all equilibrium concentrations.
7. Initially, 0.750 mol of each chemical substance are placed in a 2.0 L flask at $100^{\circ} \mathrm{C}$ and allowed to reach equilibrium:

$$
\mathbf{N}_{2}(\mathrm{~g})+\mathbf{I}_{2}(\mathrm{~g}) \leftrightarrow \mathbf{2 N I}(\mathrm{g}) \quad \mathrm{K}=\mathbf{1 4 5}
$$

a) Calculate the reaction quotient (Q) for this situation. Will this reaction shift to reach equilibrium? If so, which direction will it shift? Provide evidence for your choice.
b) Determine the equilibrium concentrations of each of the substances.

8. The solubility of BaCO_{3} is $5.1 \times 10^{-5} \mathrm{~mol} / \mathrm{L} @ 25^{0} \mathrm{C}$. Calculate the solubility product equilibrium constant (Ksp). Is this salt more or less soluble than lead(II) iodide? How did you determine this?
9. Magnesium hydroxide, also known as Milk of Magnesia, is commonly used as a remedy for heartburn. It has a low solubility in water at $25^{\circ} \mathrm{C}$. Use the Ksp value for magnesium hydroxide to calculate the solubility of this solution in both $\mathrm{mol} / \mathrm{L}$ and g / L.
10. Below is some information about the solubility of calcium hydroxide. Use it to complete the chart.

$$
\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{~s}) \leftrightarrow \mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{OH}^{-}(\mathrm{aq}) \quad \Delta \mathrm{H}=+135 \mathrm{~kJ} / \mathrm{mol}
$$

Stress	Equilibrium Shift - Left or Right?	Products Increase or Decrease?	Solubility Increase or Decrease?
Add $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$			
Add NaOH			
Add HCl			
Increase Temperature			
Decrease Temperature			

11. Calculate the solubility of magnesium hydroxide at $25^{\circ} \mathrm{C}$ when it is dissolved in a solution of 0.500 M NaOH . Compare this answer with your answer to Q\#9. What do you notice? Make a general statement regarding the solubility of substances in common ion solutions.

SOLUBILITY PRODUCT CONSTANTS AT $25^{\circ} \mathrm{C}$

Name	Formula	$\mathbf{K}_{s p}$
Barium carbonate	BaCO_{3}	2.6×10^{-9}
Barium chromate	BaCrO_{4}	1.2×10^{-10}
Barium sulphate	BaSO_{4}	1.1×10^{-10}
Calcium carbonate	CaCO_{3}	5.0×10^{-9}
Calcium oxalate	$\mathrm{CaC}_{2} \mathrm{O}_{4}$	2.3×10^{-9}
Calcium sulphate	CaSO_{4}	7.1×10^{-5}
Copper(I) iodide	CuI	1.3×10^{-12}
Copper(II) iodate	$\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}$	6.9×10^{-8}
Copper(II) sulphide	CuS	6.0×10^{-37}
Iron(II) hydroxide	$\mathrm{Fe}(\mathrm{OH})_{2}$	4.9×10^{-17}
Iron(II) sulphide	FeS	6.0×10^{-19}
Iron(III) hydroxide	$\mathrm{Fe}(\mathrm{OH})_{3}$	2.6×10^{-39}
Lead(II) bromide	PbBr_{2}	6.6×10^{-6}
Lead(II) chloride	PbCl_{2}	1.2×10^{-5}
Lead(II) iodate	$\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$	3.7×10^{-13}
Lead(II) iodide	PbI_{2}	8.5×10^{-9}
Lead(II) sulphate	PbSO_{4}	1.8×10^{-8}
Magnesium carbonate	MgCO_{3}	6.8×10^{-6}
Magnesium hydroxide	$\mathrm{Mg}(\mathrm{OH})_{2}$	5.6×10^{-12}
Silver bromate	AgBrO_{3}	5.3×10^{-5}
Silver bromide	AgBr	5.4×10^{-13}
Silver carbonate	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	8.5×10^{-12}
Silver chloride	AgCl	1.8×10^{-10}
Silver chromate	$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	1.1×10^{-12}
Silver iodate	AgIO_{3}	3.2×10^{-8}
Silver iodide	AgI	8.5×10^{-17}
Strontium carbonate	SrCO_{3}	5.6×10^{-10}
Strontium fluoride	SrF_{2}	4.3×10^{-9}
Strontium sulphate	SrSO_{4}	3.4×10^{-7}
Zinc sulphide	ZnS	2.0×10^{-25}

Solubility of Common Compounds in Water

The term soluble here means $>0.1 \mathrm{~mol} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$.

Periodic Chart of Ions

