CHEMISTRY 30S

The Alchemist's Notebook

UNIT 3 - SOLUTION CHEMISTRY

NAME:

LET'S GET STARTED!

By the end of this unit, you should be able to:
\checkmark Describe the structure of water in terms of the polarity of its chemical bonds.
\checkmark Explain how ionic and covalent compounds dissolve in water using particulate representations and dissociation equations.
\checkmark Differentiate between saturated, unsaturated, and supersaturated solutions.
\checkmark Construct, from experimental data, a solubility curve of a pure substance in water and use it to solve problems.
\checkmark Explain how changes in temperature and pressure affect the solubility of solutes.
\checkmark Quantify concentration by performing various calculations including g/100mL, \% concentration, ppm, and molarity.
\checkmark Prepare a solution of a known molarity from mass of solute and volume of water.
\checkmark Solve problems involving the dilution of solutions.
\checkmark Perform stoichiometric calculations on chemical reactions involving solutions using molarity.

This unit will take about $\mathbf{2 0}$ lessons to complete and will make up approximately $\underline{\mathbf{2 0 \%} \text { of your }}$ mark.

1. WHAT ARE SOLUTIONS?

CH3OS UNIT 3-SOLUTIONS WIEBE

1

WHAT ARE SOLUTIONS?

- A solution is a homogeneous mixture
- A solute is dissolved in a solvent.

(b)

SOLUTIONS CAN HAVE VARYING SOLUTE QUANTITY.

Concentration is the ratio of solute to solvent.

- Concentrated solutions have a high solute to solvent ratio.
- Dilute solutions have a low solute to solvent ratio.

3

TYPES OF SOLUTIONS

Examples	Original state of solute	State of solvent
air (oxygen, argon, carbon dioxide, and other gases in nitrogen)	gas	gas
carbonated beverages (carbon dioxide and flavour compounds in water)	gas	liquid
humidity (water molecules in air)	liquid or solid	gas
alcoholic beverages (ethanol in water)	liquid	liquid
silver-coloured dental fillings (mercury amalgams)	solid	liquid
air fresheners (vapours from scented solids in air)	solid	gas
clear apple juice (flavour compounds in water)	solid	liquid
brass (an alloy of copper and zinc)	liquid	liquid

An aqueous solution has water as solvent

WATERS ROLE IN THE SOLUTION PROCESS

WATER IS A POLAR COVALENT MOLECULE.

WATERS ROLE IN THE SOLUTION PROCESS

Oxygen is better at "pulling electrons" than hydrogen. As such, the shared pairs of electrons between atoms are pulled closer to the oxygen.

WATERS ROLE IN THE SOLUTION PROCESS

Partial negative charge

TESTING POLARITY OF WATER

(a)

WHEN WATER MOLECULES GET TOGETHER...

The dipoles of water molecules attract each other and intermolecular attractions form!

These forces explain waters high melting \& boiling point, as well as it's unique density and surface tension.

WATER WITHOUT GRAVITY

TRY THIS...

CHALLENGE: How many drops of water can you place on top of a penny before it spills over the edges?

WHY do you think this happens?

IONIC COMPOUNDS IN WATER

Ionic solutes dissolve in water as shown below. This process is called dissociation.

sodium chloride \rightarrow sodium cations + chloride anions

IONIC COMPOUNDS IN WATER

The positive poles of a water molecule attract to a negative ion in the crystal and removes it.

The negative pole of a water molecule attracts to a positive ion in the crystal and removes it.

15

Sample Problem 1: Writing a Dissociation Equation

Write a chemical equation for the dissociation of potassium phosphate, $\mathrm{K}_{3} \mathrm{PO}_{4}(\mathrm{~S})$.

WE WRITE DISSOCIATION EQUATIONS FOR HIGHLY SOLUBLE IONIC SOLUTES ONLY!
STEP 1: Check general solubility.
STEP 2: If highly soluble, write equation. If low solubility, write "Does not dissociate to any significant extent."

USING THE SOLUBILITY TABLE

For each of the following ionic solutes:

1. Determine if it would be highly soluble in water (aq) or low solubility in water (s).
2. Write a dissociation equation for the highly soluble solutes.

Calcium nitrate Iron(III) chloride
Silver nitrate
Ammonium nitrite
17

ANSWERS

cOVALENT COMPOUNDS IN WATER

- When a polar covalent compound dissolves in water, the polar water molecules attract to the poles of each solute molecule and pull them apart.
- Non-polar molecules DON'T DISSOLVE in water.

COVALENT COMPOUNDS IN WATER

Remember "Like Dissolves Like"

-Polar solutes dissolve in polar solvents (ie. sugar in water)

- Non-polar solutes dissolve in non-polar solvents (ie. oil in gasoline)
- All other combo's don't happen (ie. oil in water, sugar in gasoline)

2. MEASURING SOLUBILITY

REMEMBER...

-Previously, we described the solubility of a solute as being "highly soluble" \& "low solubility".
-Highly soluble compounds dissolve (dissociate) readily in water due to the polarity of the water molecules.

sodium chloride \rightarrow sodium cations + chloride anions
-The extent to which a compound dissolves in a solvent (i.e. water) is called the solubility of the solute.

SOLUBILITY CAN BE DESCRIBED IN WORDS...

saturated solution a solution that contains the maximum quantity of solute at a given temperature and pressure

supersaturated solution a solution
that contains more than the maximum quantity of solute that it should at a given temperature and pressure

3

SOLUBILITY CAN BE DESCRIBED USING NUMBERS...

The solubility of a solution is expressed as the mass of solute required to form a saturated solution in 100 g of water at a given temperature.

75 circles $=75$ gram solute
200 mL water
@ $25^{\circ} \mathrm{C}$
unsaturated solution a solution in which more solute can dissolve at a given temperature and pressure

SOLUBILITY DEPENDS ON TEMPERATURE

In the lab, you learned that
solubility is affected by temperature.

Interpreting Solubility Curves

Three labels define the different parts of the graph.

5

SOLUBILITY OF IONIC COMPOUNDS

The solubility of solid ionic compounds always increases with temperature.

Some solutes are affected by temperature more than others, resulting in different "curves".

sOlUBILITY OF GASES

The solubility of gases tends to increase at low temperatures (opposite of solids) and high pressures.

7

ANALYZING SOLUBILITY CURVES

What is the solubility of each of the following substances at the given temperature:

1. Sodium nitrate @ $10^{\circ} \mathrm{C}$
2. Sodium nitrate @ $40^{\circ} \mathrm{C}$

The solubility of a solution is expressed as the mass of solute required to form a saturated solution in 100 g of water at a given temperature.

ANALYZING SOLUBILITY CURVES

3. What volume of water is needed to dissolve 35.5 g of potassium chloride at $50^{\circ} \mathrm{C}$

9

ANALYZING SOLUBILITY CURVES
4. What mass of ammonium chloride can be dissolved in 350.0 mL of water at $\underline{70^{\circ} \mathrm{C}}$

ANALYZING SOLUBILITY CURVES

Jim Bob dissolves $25.0 \mathrm{~g} \mathrm{NaNO}_{3}$ in 30.0 mL of water at $80^{\circ} \mathrm{C}$.

1. What is the concentration of his solution in $\mathrm{g} / 100 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$?
2. Explain why his solution is NOT saturated.

ANALYZING SOLUBILITY CURVES

Jim Bob dissolves $25.0 \mathrm{~g} \mathrm{NaNO}_{3}$ in $\underline{30.0}$ mL of water at $80^{\circ} \mathrm{C}$.
3. What mass of solute could still be dissolved in his solution?

ANALYZING SOLUBILITY CURVES

Jim Bob dissolves $25.0 \mathrm{~g} \mathrm{NaNO}_{3}$ in 30.0 mL of water at $80^{\circ} \mathrm{C}$.
4. What volume of solvent could be evaporated away to make it saturated?

SUMMARY

- The solubility of a solution is expressed as the mass of solute required to form a saturated solution in 100 g of water at a given temperature.
- Solutions may be unsaturated, saturated, or supersaturated depending on the quantity of solute they hold at a given temperature and pressure.
- A solubility curve shows the solubility of a solute in a specific solvent over a range of temperatures.
- The solubility of solids generally increases as the temperature increases, while the solubility of gases decreases.
- The solubility of a gas increases as the applied pressure increases. Pressure has no significant effect on the solubility of solids and liquids.

3. CONCENTRATION - CONSUMER PRODUCTS

CH3OS UNIT 3-SOLUTIONS WIEBE

1

REMEMBER...

-The concentration of a saturated solution of a salt is called the solubility of that solute. Every salt has its own unique solubility at a given temperature.
-The concentration of an unsaturated solution varies depending on the amount of solute and solvent present.

Concentration $=$ quantity of solute quantity of solution
Quantities can be:

- Mass (grams)
- Volume (millilitres)
- Moles (mol)

WHY IS CONCENTRATION IMPORTANT?

-Prescription drugs in the correct concentration make you better.
-In higher concentration they can kill you.

- In lower concentration,
 they aren't effective, and you could get sicker.

OTHER AREAS WHERE CONCENTRATION IS IMPORTANT...

-Pesticide/fertilizer use
-Food additives
-Blood alcohol content.

- Consumer products

CONCENTRATION IN CONSUMER PRODUCTS

1. Percent Concentration
$v=$ volume $(m L) \quad m=\operatorname{mass}(g)$
$\% \frac{V}{V}=\frac{\text { volume solute }}{\text { volume solution }} \times 100$

IF THE UNITS FOR BOTH ARE THE SAME, DON'T CONVERT!

5

CONCENTRATION IN CONSUMER PRODUCTS

Table 1 Parts Per Million, Billion, Trillion

Part per	Equivalent to
1 ppm	1 drop in a bathtub full of water 30 s out of a year
1 ppb	1 drop in 250 full barrels 3 s out of a century
1 ppt	1 drop in 20 Olympic- sized pools 3 s out of 100000 years

$$
v=\text { volume }(m L) \quad m=\operatorname{mass}(g)
$$

2. Parts Per Million/Billion

$$
\begin{aligned}
& \text { ppm }=\frac{\text { quantity solute }}{\text { quantity solution }} \times 10^{6} \\
& p p b=\frac{\text { quantity solute }}{\text { quantity solution }} \times 10^{9}
\end{aligned}
$$

EXAMPLE \# 1 - DETERMINING CONCENTRATION FROM MEASURED VALUES

0.35 g of solid potassium chromate is dissolved in enough water to make 0.50 L of solution. What is concentration of the solution expressed in:

1. percent concentration
2. ppm

7

EXAMPLE \#2 - DETERMINING CONCENTRATION FROM MEASURED VALUES
A cleaning solution is created by adding 100.0 mL of Pine Sol to 4.0 L of water. What is \% concentration of the solution?

WHICH MILK IS WHICH?

Nutrition Facts	
Amount Per Serving	
Calories 110 Cals from	Cals from Fat 15
	\% Daily Value*
Total Fat 1.5 g	2\%
Saturated Fat 1g	1g 5%
Trans Fat Og	
Cholesterol 15mg	5 mg 4\%
Sodium 380mg	g 16%
Total Carbohydrate 5g	drate $5 \mathrm{~g} \quad 2 \%$
Dietary Fiber 0 g	0 g 0\%
Sugars 4g	
Protein 19g	38\%
Vitamin A 2\% • Vitami	- Vitamin C 0\%
Calcium 15\% - Iron 0\%	- Iron 0\%
Percent Daily Values are based on $\mathrm{a}, 000 \mathrm{calorie}$ diel	

Nutrition Facts	
Valeur nutritive	
Per 1 cup (250 mL) / par 1 tasse (250 mL)	
Amount \% Da Teneur \% valeur quo	\% Daily Value \% valeur quotidienne
Calories / Calories 160	
Fat / Lipides 8 g	13 \%
Saturated / saturés 5 g + Trans / trans 0.2 g	rés 5 g 26%
Cholesterol / Cholestérol 30 mg	
Sodium / Sodium 110 mg	110 mg 5\%
Carbohydrate / Glucides 12 g	ucides $12 \mathrm{~g} \quad 4 \%$
Fibre / Fibres 0 g	$\mathrm{g} \quad 0 \%$
Sugars / Sucres 11 g	
Protein / Protéines 9 g	
Vitamin A / Vitamine A	A 10%
Vitamin C / Vitamine C	C 0\%
Calcium / Calcium	30 \%
Iron / Fer	0 \%
Vitamin D / Vitamine D	D C (45 \%

9

WORKING WITH \% CONCENTRATIONS

The concentration of ethanol (alcohol) in a 750 mL bottle of wine is $13.5 \% \mathrm{~V} / \mathrm{V}$. If wine has the same density as water, calculate the volume of ethanol in the bottle.

WORKING WITH \% CONCENTRATIONS

Glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ is used to prepare intravenous feeding solutions. What volume of 5.0% W/V glucose solution can be prepared using 125 g of glucose?

11

WORKING WITH PPM/PPB CONCENTRATIONS

Swimming pool manufacturers recommend maintaining the chlorine concentration of a pool at 3.0 ppm. What mass of chlorine powder must be added to a pool containing $3.4 \times 10^{6} \mathrm{~L}$ of water to achieve this concentration?

\author{

LEARNING TIP

 Percentages and Exponents
 "ppm" is similar to the symbol "\%"
 in the equations involving percentage concentration. You could think of the
 " $\times 100$ " in the above equations as
 " $\times 10^{2}$." You could even think of "\%"
 as "pph"—parts per hundred!}

WORKING WITH PPM/PPB CONCENTRATIONS

Health Canada guidelines state that the maximum concentration of mercury that is acceptable in drinking water is 1 ppb . What volume of water would be required to have 5.0 g of Hg dissolved in it and still be acceptable?

LEARNING TIP

Percentages and Exponents "ppm" is similar to the symbol "\%" in the equations involving percentage concentration. You could think of the " $\times 100$ " in the above equations as " $\times 10^{2}$." You could even think of "\%" as "pph"—parts per hundred!

13

SUMMARY

Table 2 Measure of Concentration

Name	Abbreviation	Equation	Application
percentage volume/volume	$\% \mathrm{VN}$	$c_{\mathrm{vN}}=\frac{v_{\text {solute }}}{V_{\text {solution }}} \times 100 \%$	liquid-liquid mixtures
percentage weight/volume	$\% \mathrm{~W} N$	$c_{\mathrm{w} /}=\frac{m_{\text {solute }}}{v_{\text {solution }}} \times 100 \%$	solid-liquid mixtures
percentage weight/weight	$\% \mathrm{~W} / \mathrm{W}$	$c_{\mathrm{w} / \mathrm{w}}=\frac{m_{\text {solute }}}{m_{\text {solution }}} \times 100 \%$	solid-liquid or solid-solid mixtures
parts per million	ppm	$c_{\mathrm{ppm}}=\frac{m_{\text {solute }}}{m_{\text {solution }}} \times 10^{6} \mathrm{ppm}$	to express small concentrations (e.g., composition of air)
parts per billion	ppb	$c_{\mathrm{ppb}}=\frac{m_{\text {solute }}}{m_{\text {solution }}} \times 10^{9} \mathrm{ppb}$	to express very small concentrations (e.g., metal contaminants in water)
parts per trillion	ppt	$c_{\mathrm{ppt}}=\frac{m_{\text {solute }}}{m_{\text {solution }}} \times 10^{12} \mathrm{ppt}$	to express extremely small concentrations (e.g., traces of medications in water)

4. CONCENTRATION - CHEMISTRY LAB WORK

CH3OS UNIT 3 -SOLUTIONS WIEBE

UNDERSTANDING CONCENTRATION

"As the quantity of solute increases, the concentration of the solution increases and vice versa.
"As the quantity of solvent increases, the concentration decreases and vice versa.

$$
\text { Conc }=\frac{\text { solute }}{\text { solution }}
$$

-Spilling your solution does not change the concentration (you are losing solute and solvent at the same time!)
"As the solution evaporates, the concentration of solution increases (only solvent evaporates, not solute)

MOLARITY

The number of moles of the chemical solute per litre of solution.
$\mathrm{mol} / \mathrm{L}=\mathrm{M}$

For example:

1.8 M HCl means 1.8 moles of HCl per litre of solution.

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { volume of solution in liters }}
$$

Table 1 Amount Concentrations of Common Stock Acid Solutions

Stock acid	Amount concentration (mol/L)
hydrochloric acid, $\mathrm{HCl}(\mathrm{aq})$	12
nitric acid, $\mathrm{HNO}_{3}(\mathrm{aq})$	16
sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$	18

3

CALCULATING MOLARITY

A student makes some iced tea as per the instructions on the container. Calculate the molarity of sugar in the juice. (Assume the sugar in powdered drinks is all sucrose $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

$$
\text { Molarity }=\frac{\text { moles of solute }}{\text { volume of solution in liters }}
$$

WORKING WITH MOLARITY

Household chlorine bleach is a 0.067 M solution of sodium hypochlorite. What mass of NaClO solute is required to prepare 225 mL of bleach solution?

5

PREPARING A SOLUTIONS

Figure 5 (a) To prepare a 250 mL sample of potassium permanganate solution, you will need a volumetric flask, distilled water, a dropper, and the required mass of potassium permanganate, KMnO_{4}. (b) First dissolve the solid KMnO_{4} in about 100 mL of distilled water. (c) Use a dropper to add distilled water until the bottom of the meniscus lines up with the calibration mark on the flask.

SUMMARY

- The concentration of a solution is the quantity of dissolved solute per unit volume of solution.
- Amount concentration is the amount (in moles) of solute dissolved per litre of solution. The units of amount concentration are $\mathrm{mol} / \mathrm{L}$.
- Amount concentration is determined using the equation $c=\frac{n}{V}$.
- "Amount concentration" is the preferred IUPAC term for solution concentration (replacing molar concentration and molarity).
- Samples taken from a stock solution are diluted to prepare solutions for use in the laboratory.
- A solution of known concentration is called a standard solution.

5. DILUTIONS

CH3OS UNIT 3 - SOLUTIONS WIEBE

WHAT IS A DILUTION?

Concentrated solutions have a relatively high molarity.
Dilute solutions have a relatively low molarity.
It is often faster to prepare a standard solutions by diluting a more concentrated solution.

The following equation can be used to solve dilution
 problems - when water is added or removed from a solution.

$$
M_{1} V_{1}=M_{2} V_{2}
$$

$M_{1}=$ the initial molarity $\quad M_{2}=$ the final molarity
$\mathbf{V}_{1}=$ the initial volume $\quad \mathbf{V}_{2}=$ the final volume

The Dilution Formula - How it Works

If we have 1 L of 3 M HCl , what is the new concentration if we dilute the acid to 6 L by adding 5 L of water?

$$
\begin{array}{cc}
1 \mathrm{~L} \times \frac{3 \mathrm{~mol}}{1 \mathrm{~L}}=3 \mathrm{~mol} \mathrm{HCl} & \frac{3 \mathrm{~mol} \mathrm{HCl}}{6 \mathrm{~L}}=0.5 \mathrm{M} \\
\mathrm{M}_{1} \mathrm{v}_{1}=3 \mathrm{~mol} & \mathrm{M}_{2} \mathrm{v}_{2}=3 \mathrm{~mol} \\
& 0.0
\end{array}
$$

Dilutions spread the same quantity of solute over a larger volume of solution!

A Practical Dilution...

Every can of Minute Made concentrated frozen orange juice has a volume of 250 mL and a molarity of $1.17 \mathrm{M} \mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$. To prepare a jug of juice, 3 cans of water are added to one can of frozen juice.

DETERMINE THE MOLARITY OF SUCROSE IN A PREPARED JUG OF OJ.

DETERMINE THE MOLARITY OF SUCROSE IN A PREPARED JUG OF OJ.

EXAMPLE \# 1

What volume of 0.755 M sodium chloride solution is required to prepare 250.0 mL of a 0.500 M solution?

EXAMPLE \#2

A student measures 100.0 mL of a 5.0 M potassium chloride solution and adds enough water to it to make the volume 2.0 L . What will be the molarity of this new solution?

EXAMPLE \#3

How much water would you need to add to 200.0 mL of a 1.50 M sodium nitrate solution to dilute it down to 0.250 M ?

6. STOICHIOMETRY OF SOLUTIONS

WIEBE

GENERAL STOICH PRINCIPLES

Solving stoichiometry problems involves the same general strategy, regardless of the substances involved.


```
molar mass of x molar mass of y
grams (x) ↔ moles (x) ↔ moles (y) ↔ grams (y)
mole ratio from balanced equation
```


$22.4 \mathrm{~L} / \mathrm{mol}$
 volume $(\mathrm{x}) \leftrightarrow$ moles $(\mathrm{x}) \leftrightarrow$ moles $(\mathrm{y}) \leftrightarrow$ volume (y) mole ratio from balanced equation

Molarity of x
 Molarity of y
 volume (x) \leftrightarrow moles (x) \leftrightarrow moles $(\mathrm{y}) \leftrightarrow$ volume (y) mole ratio from balanced equation

3

EXAMPLE \# 1

Determine the minimum volume of $0.42 \mathrm{~mol} / \mathrm{L}$ sodium sulfate, $\mathrm{Na}_{2} \mathrm{SO}_{4}(\mathrm{aq})$, that is required to react completely with all the barium ions in 500.0 mL of a $0.100 \mathrm{~mol} / \mathrm{L}$ barium chloride, BaCl_{2}, solution.

EXAMPLE \#2

Determine the mass of silver that could be produced when 50.0 mL of 0.200 M silver nitrate reacts fully with an excess amount of copper.

EXAMPLE \#3

Predict the mass of precipitate expected when 1.50 L of $0.800 \mathrm{~mol} / \mathrm{L}$ sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3}$, is mixed with 850 mL of a $1.00 \mathrm{~mol} / \mathrm{L}$ aluminum nitrate, $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$, solution.

Solubility of Common Compounds in Water

The term soluble here means $>0.1 \mathrm{~mol} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$.

Periodic Chart of Ions

PERIODIC TABLE OF THE ELEMENTS

