CHEMISTRY 30S

The Alchemist's Notebook

UNIT 3 – SOLUTION CHEMISTRY

NAME:

LET'S GET STARTED!

By the end of this unit, you should be able to:

- \checkmark Describe the structure of water in terms of the polarity of its chemical bonds.
- Explain how ionic and covalent compounds dissolve in water using particulate representations and dissociation equations.
- ✓ Differentiate between saturated, unsaturated, and supersaturated solutions.
- ✓ Construct, from experimental data, a solubility curve of a pure substance in water and use it to solve problems.
- ✓ Explain how changes in temperature and pressure affect the solubility of solutes.
- ✓ Quantify concentration by performing various calculations including g/100mL, % concentration, ppm, and molarity.
- ✓ Prepare a solution of a known molarity from mass of solute and volume of water.
- ✓ Solve problems involving the dilution of solutions.
- ✓ Perform stoichiometric calculations on chemical reactions involving solutions using molarity.

This unit will take about <u>20 lessons</u> to complete and will make up approximately <u>20% of your</u> <u>mark</u>.

CH30S UNIT 3 - SOLUTIONS WIEBE

TYPES OF SOLUTIONS

Examples	Original state of solute	State of solvent
air (oxygen, argon, carbon dioxide, and other gases in nitrogen)	gas	gas
carbonated beverages (carbon dioxide and flavour compounds in water)	gas	liquid
humidity (water molecules in air)	liquid or solid	gas
alcoholic beverages (ethanol in water)	liquid	liquid
silver-coloured dental fillings (mercury amalgams)	solid	liquid
air fresheners (vapours from scented solids in air)	solid	gas
clear apple juice (flavour compounds in water)	solid	liquid
brass (an alloy of copper and zinc)	liquid	liquid

An aqueous solution has water as solvent

WATERS ROLE IN THE SOLUTION PROCESS

Oxygen is better at "pulling electrons" than hydrogen. As such, the shared pairs of electrons between atoms are pulled closer to the oxygen.

WHEN WATER MOLECULES GET TOGETHER ...

The dipoles of water molecules attract each other and <u>intermolecular</u> <u>attractions</u> form!

These forces explain waters high melting & boiling point, as well as it's unique density and surface tension.

<u>CHALLENGE</u>: How many drops of water can you place on top of a penny before it spills over the edges?

WHY do you think this happens?

IONIC COMPOUNDS IN WATER

The positive poles of a water molecule attract to a negative ion in the crystal and removes it.

The negative pole of a water molecule attracts to a positive ion in the crystal and removes it.

1	Negative Ions (Anions)	Positive Ions (Cations)	Solubilit Compou	y of nds			
	All	All Alkali ions: Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺					
	All	Hydrogen ion: H*	Soluble				
	All	Ammonium ion: NH4*	Soluble				
	Nitrate, NO3 ⁻	All	Soluble				
or	Chloride, Cl ⁻	All others	Soluble				
or	Iodide, I ⁻	Ag^{+}, Pb^{2+}, Cu^{+}		Low Solubili			
_		All others	Soluble				
	Sulphate, SO ₄	$Ag^{+}, Ca^{2+}, Sr^{2+}, Ba^{2+}, Pb^{2+}$		Low Solubili			
		Alkali ions, $H^{+}, N{H_{4}}^{+}, Be^{2+}, Mg^{2+}, Ca^{2+}, Sr^{2+}, Ba^{2+}$	Soluble				
	Sulphide, S	All others		Low Solubili			
		Alkali ions, H ⁺ , NH ₄ ⁺ , Sr ²⁺	Soluble				
	Hydroxide, OH	All others		Low Solubili			
or	Phosphate, PO ₄ ³⁻	Alkali ions, H ⁺ , NH ₄ ⁺	Soluble				
or	Carbonate, CO3 ²⁻ Sulphite, SO3 ²⁻	All others		Low Solubili			

Some ionic solutes dissolve better in water than others.

- <u>HIGH SOLUBILITY</u> = dissolves readily (aq)
- <u>LOW SOLUBILITY</u> = doesn't appear to dissolve to any extent (even though it does a bit). (s)

	SO	LUBILITY OF COMMON COMPOUNDS IN V The term soluble here means > 0.1 mol/L at 25°C.	VATER		Determine the general solubility of the							
Negat (Anio	tive <mark>Ions</mark> ons)	Positive Ions (Cations)	Solubilit Compou	ty of inds	following solutes:							
All		Alkali ions: $\mathrm{Li}^{*},~\mathrm{Na}^{*},~\mathrm{K}^{*},~\mathrm{Rb}^{*},~\mathrm{Cs}^{*},~\mathrm{Fr}^{*}$	Soluble									
All		Hydrogen ion: H*	Soluble		sodium chloride							
All		Ammonium ion: $\mathrm{NH_4}^+$	Soluble									
Nitra	rate, NO ₃ ⁻	All	Soluble									
or Chlo	oride, Cl ⁻	All others 			calcium sulphate							
or Iodie	ide, I			Low Solubility								
Sula	abate SO.2-	All others	Soluble									
	J	Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺		Low Solubility	lithium hydroxide							
Sula	ahida S ²⁻	Alkali ions, H^+ , NH_4^+ , Be^{2+} , Mg^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+}	Soluble									
Jup	Junce, 5	All others		Low Solubility								
		Alkali ions, H^+ , NH_4^+ , Sr^{2+}	Soluble									
Hyd	IIOXIGE, OH	All others		Low Solubility	zinc hydroxide							
or Phos	sphate, PO_4^{3-}	Alkali ions, H ⁺ , NH ₄ ⁺	Soluble		-							
or Sulp	phite, SO ₃ ²⁻	All others		Low Solubility								

USING THE SOLUBILITY TABLE

For each of the following ionic solutes:

- 1. Determine if it would be highly soluble in water (aq) or low solubility in water (s).
- 2. Write a dissociation equation for the highly soluble solutes.

Calcium nitrate	Barium sulphate
Iron(III) chloride	Nickel(II) hydroxide
Silver nitrate	Aluminum sulphate
Ammonium nitrite	Sodium sulphide

SOLUBILITY CAN BE DESCRIBED IN WORDS...

saturated solution a solution that contains the maximum quantity of solute at a given temperature and pressure **unsaturated solution** a solution in which more solute can dissolve at a given temperature and pressure

supersaturated solution a solution that contains more than the maximum quantity of solute that it should at a given temperature and pressure

SUMMARY

- The solubility of a solution is expressed as the mass of solute required to form a saturated solution in 100 g of water at a given temperature.
- Solutions may be unsaturated, saturated, or supersaturated depending on the quantity of solute they hold at a given temperature and pressure.
- A solubility curve shows the solubility of a solute in a specific solvent over a range of temperatures.
- The solubility of solids generally increases as the temperature increases, while the solubility of gases decreases.
- The solubility of a gas increases as the applied pressure increases. Pressure has no significant effect on the solubility of solids and liquids.

WHY IS CONCENTRATION IMPORTANT?

 Prescription drugs in the correct <u>concentration</u> make you better.

 In <u>higher concentration</u> they can kill you.

In <u>lower concentration</u>, they aren't effective, and you could get sicker.

OTHER AREAS WHERE CONCENTRATION IS IMPORTANT...

- Pesticide/fertilizer use
- Food additives
- Blood alcohol content.
- Consumer products

Nutrition Fac	ts (150g)	DETERMINE THE %	Nutrition Facts Valeur nutritive Per 1 cup (250 mL) / par 1 tasse (250 mL)
Amount Per Serving		FACH OF THE MILK LABELS.	Amount % Da	ily Valu tidienn
Calories 110 Cals from F	at 15		Calories / Calories 160	aatonn
% Daily	Value*		Fat / Lipides 8 g	13 %
Total Fat 1.5g	2%		Saturated / saturés 5 g	26 9
Saturated Fat 1g	5%		+ Trans / trans 0.2 g	20 /
Trans Fat 0g			Cholesterol / Cholestérol 30 mg	I
Cholesterol 15mg	4%		Sodium / Sodium 110 mg	5 %
Sodium 380mg	16%		Carbohydrate / Glucides 12 g	4 %
Total Carbohydrate 5g	2%		Fibre / Fibres 0 g	0 %
Dietary Fiber 0g	0%		Sugars / Sucres 11 g	
Sugars 4g			Protein / Protéines 9 g	
Protein 19g	38%		Vitamin A / Vitamine A	10 9
Vitamin A 2% • Vitamin	C 0%		Vitamin C / Vitamine C	0 9
Calcium 15% · Iron 0%			Calcium / Calcium	30 %
*Percent Daily Values are based on a 2 000 c	alorie diet		Vitamin D / Vitamine D	45 9

WORKING WITH % CONCENTRATIONS

Glucose ($C_6H_{12}O_6$) is used to prepare intravenous feeding solutions. What volume of 5.0% W/V glucose solution can be prepared using 125 g of glucose?

WORKING WITH PPM/PPB CONCENTRATIONS

Health Canada guidelines state that the maximum concentration of mercury that is acceptable in drinking water is 1 ppb. What volume of water would be required to have 5.0 g of Hg dissolved in it and still be acceptable?

LEARNING **TIP**

Percentages and Exponents "ppm" is similar to the symbol "%" in the equations involving percentage concentration. You could think of the "× 100" in the above equations as "× 10²." You could even think of "%" as "pph"—parts per hundred!

13

SUMMARY

 Table 2
 Measure of Concentration

Name	Abbreviation	Equation	Application
percentage volume/volume	% V/V	$c_{\rm v/v} = rac{v_{\rm solute}}{v_{\rm solution}} imes 100 ~\%$	liquid–liquid mixtures
percentage weight/volume	% W/V	$c_{ m w/v} = rac{m_{ m solute}}{v_{ m solution}} imes 100 \; \%$	solid–liquid mixtures
percentage weight/weight	% W/W	$c_{ m w/w} = rac{m_{ m solute}}{m_{ m solution}} imes 100 \ \%$	solid–liquid or solid–solid mixtures
parts per million	ppm	$c_{ m ppm} = rac{m_{ m solute}}{m_{ m solution}} imes 10^6 m ppm$	to express small concentrations (e.g., composition of air)
parts per billion	ppb	$c_{ m ppb} = rac{m_{ m solute}}{m_{ m solution}} imes 10^9 m ppb$	to express very small concentrations (e.g., metal contaminants in water)
parts per trillion	ppt	$c_{\rm ppt} = rac{m_{ m solute}}{m_{ m solution}} imes 10^{12} { m ppt}$	to express extremely small concentrations (e.g., traces of medications in water)

MOLARITY

The number of **moles** of the chemical solute per litre of solution.

mol/L = M

For example:

1.8 M HCl means 1.8 moles of HCl per litre of solution.

moles of solute

Molarity = volume of solution in liters Table 1 Amount Concentrations of **Common Stock Acid Solutions**

Stock acid	Amount concentration (mol/L)					
hydrochloric acid, HCl(aq)	12					
nitric acid, HNO ₃ (aq)	16					
sulfuric acid, $H_2SO_4(aq)$	18					

C A si inst mo sug C ₁₂	ALCULATING MOLARITY tudent makes some iced tea as per ructions on the container. Calcula larity of <u>sugar</u> in the juice. (Assume par in powdered drinks is all <u>sucrose</u> H ₂₂ O ₁₁	er the bet the e the e the Calories / Calories 100
N	folarity = <u>moles of solute</u> volume of solution in liters	Fat / Lipides 0 g0 %Saturated / saturés 0 g0 %+ Trans / trans 0 g0 %Cholesterol / Cholestérol 0 mgSodium / Sodium 0 mg0 %Potassium / Potassium 15 mg1 %Carbohydrate / Glucides 25 g8 %Fibre / Fibres 0 g0 %Sugars / Sucres 24 g0 %

SUMMARY

- The concentration of a solution is the quantity of dissolved solute per unit volume of solution.
- Amount concentration is the amount (in moles) of solute dissolved per litre of solution. The units of amount concentration are mol/L.
- Amount concentration is determined using the equation $c = \frac{n}{V}$.
- "Amount concentration" is the preferred IUPAC term for solution concentration (replacing molar concentration and molarity).
- Samples taken from a stock solution are diluted to prepare solutions for use in the laboratory.
- A solution of known concentration is called a standard solution.

5. DILUTIONS CH30S UNIT 3 - SOLUTIONS

EXAMPLE #1

What volume of 0.755 M sodium chloride solution is required to prepare 250.0 mL of a 0.500 M solution?

EXAMPLE #2

A student measures 100.0 mL of a 5.0 M potassium chloride solution and adds enough water to it to make the volume 2.0 L. What will be the molarity of this new solution?

EXAMPLE #3

How much water would you need to add to 200.0 mL of a 1.50 M sodium nitrate solution to dilute it down to 0.250 M?

SOLUBILITY OF COMMON COMPOUNDS IN WATER

	Negative Ions (Anions)	Positive Ions (Cations)	Solubility Compour	y of nds
	All	Alkali ions: Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺	Soluble	
	All	Hydrogen ion: H ⁺	Soluble	
	All	Ammonium ion: NH ₄ ⁺	Soluble	
	Nitrate, NO ₃ ⁻	All	Soluble	
or	Chloride,Cl ⁻	All others	Soluble	
or	Iodide, I ⁻	Ag ⁺ , Pb ²⁺ , Cu ⁺		Low Solubility
	2 - 1	All others	Soluble	
	Sulphate, SO_4^2	Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺		Low Solubility
	-2-	Alkali ions, H ⁺ , NH ₄ ⁺ , Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺	Soluble	
	Sulphide, S	All others		Low Solubility
		Alkali ions, H ⁺ , NH ₄ ⁺ , Sr ²⁺	Soluble	
	Hydroxide, OH	All others		Low Solubility
or	Phosphate, PO_4^{3-}	Alkali ions, H ⁺ , NH ₄ ⁺	Soluble	
or	Carbonate, CO_3^{-1} Sulphite, SO_3^{-2-}	All others		Low Solubility

The term soluble here means > 0.1 mol/L at 25°C.

	VIIIA	2	Н	helium		2	Ne	neon	0	0	Ar	argon	36	Кr	krypton	54	Xe	xenon	86	Rn					71	Ľ	lutetium	103	Gd ³⁺	lawrencium
						ת	<u>ن</u> د	fluoride	1	2	<u>נ</u>	chloride	35	Br'	bromide	53	<u>.</u>	iodide	85	At ⁻					70 VL ³⁺	vtterbium (III)	ytterbium (II)	102 2+	nobelium (II)	NO nobelium (III)
						ø	ō	oxide	4	<u>0</u>	S ²⁻	sulfide	34	Se ²⁻	selenide	52	Te ²⁻	telluride	84 D_2 ⁺		polonium (IV)				69	Tm ³⁺	thulium	101	mendelevium(II)	mendelevium (III
					¥.		ž	nitride	L	<u>0</u>	Å	phosphide	33	As ³⁻	arsenide	51 2. ³⁺	antimony (III)	antimony (V)	83 D: ³⁺	bismuth (III) Bi ⁵⁴	bismuth (V)				68	E ^{_3+}	erbium	100	Fm ³⁺	fermium
					A	٥	ပ	carbon		4	Si	silicon	32	Ge ⁴⁺	gemanium	50 A ⁺⁺	Un tin (IV) Z+	tin (II)	82 BL ²⁺	Pb ⁴⁺	lead (IV)				67	Ho ³⁺	muimlor	66	Es ³⁺	einsteinum
				i	∎ ∎	<u>ი</u>	B	boron	ç	2	Al ³⁺	aluminum	31	Ga ³⁺	gallium	49	In ³⁺	indium	81 ⊑†		thallium (III)				99	D	dysprosium	98	Cf ³⁺) californum
	PO4 ⁻	SiO ₃ ²⁻	SO_4^{2-}	S03 ²⁻	ΗS	HSO4 ⁻	HSO ^{3⁻}	SCN	$S_2O_3^{2-}$			B	30	Zn ²⁺	zinc	48	Cd ²⁺	cadmium	80 1 ²⁺		mercury (I)				65	Tb ³⁺	terbium	97 Di ³⁴	berkelium (III	DER berkelium (IV
	i phosphate				sulphide	sulphate	sulphite	đ	e			8	29 C. ²⁺	copper (II)	Cu copper (I)	47	Ag ⁺	() silver	79 A ³⁺		(I) gold (I)				64	Gd ³⁺	gadolinium)	96	Cm ³⁺	v) curium
	dihydroger	silicate	sulphate	sulphite	hydrogen (hydrogen s	hydrogen s	thiocyanat	thiosulphat			Γ	28 M:2 ⁺	nickel (II)	nickel (III)	46 5 ²⁺	paladium (II	paladium (N	78 4+		platinum (II				63 E: 34	II) europium (II	europium(II	95 - 3+	() americium (I	() americium (I)
lons	07 ²⁻		<u>.</u>		3.	2.	0000 ²⁻	04	4 3-	04 ²⁻			27 C 2+	cobalt (II)	Cobalt (III)	45	Rh ³⁺	 chodium 	77	Ir ⁴⁺					62 6 ³⁺	samarium (II	samium(II)	94 7 4	plutonium (IV	plutonium (V
olyatomic	Cr ₂	CN	НО	Õ	NO	N	8	e Mn	PO	sphate HP		L	26 7_3 ⁺	(II) iron (III)	(II) Icon (II)	44 1 *	ruthenium (II	ruthenium (I)	76	OS ⁴⁺					61	Pm ³⁺	n promethium	93	Np ⁵⁺) neptunium
Table of Po	hromate	anide	droxide	late	rate	rite	alate	rmanganat	osphate	drogen pho		VIIB	25 M ²⁺	I) manganese () manganese (43	Tc ^{7∔}	n technetium	75	Re ⁷⁺					60	Nd ³⁺	m neodymium	92 6+	V) uranium (VI	V) uranium (IV
	00 ⁻ dic	cya	DO ⁻ hy	iod	niti	niti	ÖXÖ	be	чd	hyo		VIB	24 C3+)	() chromium (II	42	Mo ⁶⁺	molybdenun	74	W ⁶⁺					59	۳r³	praseodymiu	91 5 ⁵⁴	protactinium (protactinium(I
	CH ₃ CO	NH4 ⁺	C ₆ H ₅ C(BO_{3}^{3}	co ₃ 2-	ate HCO ₃ ⁻	CIO3 ⁻	CIO	CrO4 ²⁻			VB	23 1 ⁵⁴	vanadium (V	vanadium (IV	41 ⁵⁺	niobium (V)	niobium (III)	73	Ta ⁵⁺					58	Ce ³⁺	cerium	06	Th ⁴⁺	thorium
	е	nium	ate		nate	gen carbon	te	hlorite	ate			IVB	22 •:4	titanium (IV)	titanium (III)	40	Zr ⁴⁺	zirconium	72	Hf ⁴⁺					Ð	me :)				
	acetat	ammo	penzo	borate	carbor	hydrog	chlora	hypocl	chrom			IIB	21	Sc ³⁺	scandium	39	⊀ ³⁺	yttrium	57	La ³⁺	80	3	Ac ³⁺		ion charg	tiUPAC				
				:	A	4	Be²⁺	Beryllium	ç	7	Mg ²⁺	magnesium	20	Ca ²⁺	calcium	38	Sr ²⁺	strontium	56	Ba ²⁺	88	3	Ra ²⁺	KEV	• 26 Ea ³⁺ ≪	iron (III) <	Fe ²			
	Ā	1	Ţ	hydrogen		ñ	±.	lithium		=	Na⁺	sodium	19	¥	potassium	37	Rb⁺	nubidium	55	Cs ⁺	87	5	Fr ⁺		atomic		symbol			

Periodic Chart of lons

18	Heium 2	4.0 10 Neon 20.2	18 Ar Argon 39.9	36 Krinton	83.8	54 Xe	Xenon 131.3	86 Radon	(222)		71 Lutetium 175.0	103 Lr Lawrencium (262)
17		9 Fluorine 19.0	17 Chlorine 35.5	35 Br	79.9	53	lodine 126.9	85 At Astatine	(210)		70 Yb Ytterbium 173.0	102 Nobelium (259)
16		8 Oxygen 16.0	16 Sulphur 32.1	34 Selanium	79.0	52 Te	Tellurium 127.6	84 Polonium	(209)		69 Thulium 168.9	101 Nd Mendelevium (258)
15		7 Nitrogen 14.0	15 Phosphorus 31.0	33 As	74.9	51 Sb	Antimony 121.8	83 Bismuth	209.0		68 Erbium 167.3	100 Fm Fermium (257)
14		6 Carbon 12.0	14 Silicon 28.1	32 Ge	72.6	50 Sn	Tin 118.7	82 Pb	207.2		67 Ho 164.9	99 Es Einsteinium (252)
13		5 Boron 10.8	13 Aluminum 27.0	31 Galium	69.7	49 In	Indium 114.8	81 Thallium	204.4		66 Dysprosium 162.5	98 Cf Californium (251)
12				30 Zm	65.4	48 Cd	Cadmium 112.4	80 Hg	200.6		65 Tb ^{Terbium} 158.9	97 BK Berkelium (247)
11				29 Cu	63.5	47 Ag	Silver 107.9	79 Gold	197.0		64 Gd Gadolinium 157.3	96 Cm ^{Curium} (247)
10	Г			Nickal	58.7	46 Pd	Palladium 106.4	78 Ptatinum	195.1		63 Eu Europium 152.0	95 Am Americium (243)
6		ic Number ol ic Mass		27 Co	58.9	45 Rh	Rhodium 102.9	77 Ir Iridium	192.2	1 09 Mt Meitnerium (266)	62 Samarium 150.4	94 Pu Plutonium (244)
8		Atom Symb Name Atom		26 Fe	55.8	⁴⁴ Bu	Ruthenium 101.1	76 Os Osmium	190.2	108 Hassium (265)	61 Promethium (145)	93 Neptunium (237)
7		14 • • • • • • • • • • • • • • • • • • •		25 Mn	54.9	43 Tc	Technetium (98)	75 Rhenium	186.2	107 Bh Bohrium (262)	60 Neodymium 144.2	92 Uranium 238.0
9	L			Chromium	52.0	42 Mo	Molybdenum 95.9	74 V Tungsten	183.8	106 Sg Seaborgium (263)	59 Praseodymium 140.9	91 Pa Protactinium 231.0
5				23 Vanadium	50.9	41 Nb	Niobium 92.9	73 Ta Tantalum	180.9	105 Dbb Dubnium (262)	58 Cerium 140.1	90 Th Thorium 232.0
4				1 Ti	47.9	40 Zr	Zirconium 91.2	72 Hf Hafnium	178.5	104 Rtherfordium (261)		for aturally.
3				Scandium Scandium	45.0	es ≻	Yttrium 88.9	57 Lanthanum	138.9	89 Ac Actinium (227)	¹² at 12.00	es e most t isotopes of occur n
2		4 Be Beryllium 9.0	12 Mg Magnesium 24.3	20 Calorium	40.1	88 S	Strontium 87.6	56 Barium	137.3	88 Radium (226)	nass of C	parenthese sees of the set known which do n
	Hydrogen 1.0	33 Lithium 6.9	11 Na Sodium 23.0	19 Dataseium	39.1	37 Rb	Rubidium 85.5	55 Cestum	132.9	87 Fr (223)	3ased on 1	Values in J ure the mo stable or b elements w

PERIODIC TABLE OF THE ELEMENTS