CHEMISTRY 40S

The Alchemist's Notebook

UNIT 4 - ACIDS \& BASES

NAME:

1. BRONSTED-LOWRY ACIDS \& BASES

CH4OS UNIT 4 - ACID BASE EQUILIBRIUM

1

BRONSTED LOWRY ACIDS

An acid is a hydrogen ion donor.

BRONSTED LOWRY BASES

A base is a hydrogen ion acceptor.

3

CONJUGATE ACID BASE PAIRS

LEARNING TIP

The conjugate acid always contains one more H^{+}than the conjugate base.

conjugate acid the substance that forms when a base, according to the BrønstedLowry theory, accepts a hydrogen ion (proton)
conjugate base the substance that forms when an acid loses a hydrogen ion (proton)

CONJUGATE ACID BASE PAIRS

LEARNING TIP

The conjugate acid always contains one more H^{+}than the conjugate base.

- Conjugates act as the acid and base for the reverse reaction.
- The bases that are the best at taking protons dictate eq'm position.

A SUBSTANCE CAN BE BOTH?

amphiprotic (amphoteric) able to donate or accept a hydrogen ion (proton) and thus act as both a Brønsted-Lowry acid and a Brønsted-Lowry base

$$
\begin{aligned}
& \mathrm{HCO}_{3(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}_{(0)} \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq)}}+\mathrm{OH}_{(\mathrm{aq})}^{-} \\
& \text {base acid } \\
& \mathrm{HCO}_{3(\mathrm{aq})}^{-}+\mathrm{H}_{2} \mathrm{O}_{(0)} \rightleftharpoons \mathrm{CO}_{3(\mathrm{aq})}^{2-}+\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+} \\
& \text {acid base }
\end{aligned}
$$

AMPHOTERIC CHEMICALS

Water is amphoteric

$$
\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{OH}^{-}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

FOR EXAMPLE

Write the Bronsted-Lowery equations for the following acids in aqueous solution and identify the conjugate acid-base pairs:

Hydrochloric acid (HCl)

Acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$

Anilinium ion $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{3}{ }^{+}\right)$

FOR EXAMPLE

Write the Bronsted-Lowery equations for the following bases in aqueous solution and identify the conjugate acid-base pairs:

Methylamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$

Ammonia $\left(\mathrm{NH}_{3}\right)$

2. STRONG VS. WEAK ACIDS \& BASES

CH4OS UNIT 4 - ACID BASE EQUILIBRIUM

1

STRONG VS. WEAK

Strong acid
HA molecules
completely dissociate

Weak acid
HA molecules partially dissociate

STRONG ACIDS REVISED

A strong acid is a forceful H^{+}donor. It must give an H^{+} to someone! Once a strong acid donates H^{+}, the H^{+} will never come back.

- Acid chart top six
- Not equilibrium...stoichiometric relationships...No ICE table!
- Use a " \rightarrow " and no† " \rightleftarrows "
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
1.0M

3

RELATIVE ACID STRENGTH

5

WEAK ACIDS REVISED

A weak acid is a wishy-washy H^{+}donor. It can give away its H^{+}, but may regain the H^{+}a few seconds later. Every acid that is not a strong acid is a weak acid.

- Produce small amounts of $\mathrm{H}^{+} / \mathrm{H}_{3} \mathrm{O}^{+}$.
- Equilibriums...equilibrium constants ($\mathrm{K}_{\mathrm{a}}{ }^{\prime}$ s)...need ICE tables .
- Use a " \rightleftarrows " and not " \rightarrow "

$$
\mathrm{HF}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

1.0M

RELATIVE ACID STRENGTH

7

DON'T FORGET LAST LESSON!

- In order to have a reaction, both an acid (H^{+}donor) and a base (H^{+}acceptor) are required!
- The reaction itself is an \mathbf{H}^{+}transfer (sometimes called a proton transfer) from the acid to the base (like tossing a football from quarterback to receiver).
- Many acid-base reactions are reversible, so the H^{+}(the "football") may be passed back and forth.

SOME COMMON WEAK ACIDS

Acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{a}}=1.8 \times 10^{-5} \\
& \mathrm{~K}_{\mathrm{a}}=4.5 \times 10^{-4}
\end{aligned}
$$

Write the Bronsted Lowry equation for each acid in water and identify the acids and bases.

Write the Ka expression for each acid. Which acid is stronger? Why?

STRONG BASES REVISED

A strong base is a forceful H^{+}grabber. If an acidic hydrogen is anywhere to be found, the strong base will take it and keep it! There is only 1 strong base that you will see in this class:

- Produce large amounts of OH^{-}.
- Not equilibrium...stoichiometric relationships...no ICE tables
- Use a " \rightarrow " and not " \rightleftarrows "

$$
\begin{aligned}
& \mathrm{OH}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \\
& 1.0 \mathrm{M}
\end{aligned}
$$

11

STRONG BASES

Soluble Hydroxides LiOH
NaOH
KOH
$\mathrm{Sr}(\mathrm{OH})_{2}$ $\mathrm{Ba}(\mathrm{OH})_{2}$

WEAK BASES REVISED

A weak base is a wishy-washy H^{+}acceptor. It can take an H^{+}, but may relinquish the H^{+}a few seconds later. Every base that is NOT hydroxide is a weak base.

- Produce small amounts of OH^{-}.
- Equilibriums...equilibrium constants (K_{b} ' s)...need ICE tables .
- Use a " \ddagger " and not " \rightarrow "
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ 1.0M

SOME COMMON WEAK BASES

Bicarbonate ion, HCO_{3}^{-}
$\mathrm{K}_{\mathrm{b}}=2.3 \times 10^{-8}$
Ammonia, NH_{3}
$\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$

Write the Bronsted Lowry equations for each base in water and identify the acids and bases.

Write the K_{b} expression for each acid. Which base is stronger? Why?

15

3. AN INTRODUCTION TO pH

UNIT $4 \quad$ CH4OS WIEBE

1

WATER IS AMPHOTERIC

- In a sample of pure water, occasionally molecules collide effectively and a H^{+} transfer occurs.
$\mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \rightleftarrows \mathrm{OH}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
Water Water Hydroxide Hydronium ion ion
- This equilibrium is VERY reactant favoured.
$\mathrm{K}_{\mathrm{w}}=$
- All aqueous solutions contain both $\mathrm{H}_{3} \mathrm{O}^{+}$and OH^{-}.

AQUEOUS SOLUTION RELATIONSHIPS

In neutral solutions
In acidic solutions
In basic solutions
$\left[\mathrm{H}_{(\mathrm{aq})}^{+}\right]=\left[\mathrm{OH}_{(\mathrm{aq})}^{-}\right]$
$\left[\mathrm{H}_{(a q)}^{+}\right]>\left[\mathrm{OH}_{(\mathrm{aq})}^{-}\right]$
$\left[\mathrm{H}_{(\mathrm{aq})}^{+}\right]<\left[\mathrm{OH}_{(\mathrm{aq})}^{-}\right]$

WORKING WITH K

	[H30']	WORK	[OH-] Acid Base Neutral	
1.	$1.0 \times 10^{-8} \mathrm{M}$			
2.			$1.0 \times 10^{-10} \mathrm{M}$	
3.	$1.0 \times 10^{-7} \mathrm{M}$			

Note that in an acid, the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is $L A R G E$ and the $\left[\mathrm{OH}^{-}\right]$is small.

THE pH SCALE

- pH is used to represent the hydrogen/hydronium ion concentration in a solution.
- pOH is used to represent the hydroxide ion concentration in a solution.
- In every solution, the $\mathrm{pH}+\mathrm{pOH}=14$.
pAnything = logarithm of that thing

5

USING LOGS TO SIMPLIFY THINGS

pH the negative logarithm of the concentration of hydrogen ions in an aqueous solution
pOH the negative logarithm of the concentration of hydroxide ions in an

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}(\mathrm{aq})\right]
$$ aqueous solution

$$
\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}(\mathrm{aq})\right]
$$

A HANDY TOOL...

WORKING WITH pH

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$	$\mathbf{p O H}$
$1.0 \times 10^{-4} \mathrm{M}$			

WORKING WITH pH

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH
$2.3 \times 10^{-2} \mathrm{M}$			

9

WORKING WITH pH

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$	$\mathbf{p O H}$
	$1.0 \times 10^{-6} \mathrm{M}$		

WORKING WITH pH

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH
	$7.2 \times 10^{-5} \mathrm{M}$		

11

WORKING WITH pH

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH
		3.00	

12

WORKING WITH pH

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	pH	pOH
		8.35	

13

WORKING WITH pH

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$	$\left[\mathrm{OH}^{-}\right]$	$\mathbf{p H}$	$\mathbf{p O H}$
			11.00

4. pH OF STRONG ACIDS \& BASES
 UNIT 4
 CH 40 S
 WIEBE

1

DON'T FORGET...

STRONG ACIDS

- Ionize completely in water therefore not equilibriums.
- Use B/L or dissociation equation and stoichiometry

3

HAVE A PLAN OF ACTION!

4

FOR EXAMPLE

Nitric acid is used in the production of agricultural fertilizers, explosives such as TNT, and dyes. Determine pH of a 0.25 M solution of HNO_{3}.

STRONG BASES

- Soluble hydroxides \rightarrow dissociate completely in water
- Not equilibriums...use dissociation equations and stoichiometry

HAVE A PLAN OF ACTION!

7

FOR EXAMPLE

Calcium hydroxide is an important component of cement, plasters, and mortars. It is also sometimes used to make your pickles extra crunchy! Calculate the pH of a $0.125 \mathrm{M} \mathrm{Ca}\left(\mathrm{OH}_{2}\right)^{\text {solution }}$.

PUTTING IT ALL TOGETHER!

Calculate the pH of each of the following solutions and ranks them from most to least acidic.

Solution	Volume and Molarity	Calculations
X	100.0 mL of 0.10 M HCl	
Y	200.0 mL of 0.20 M NaOH	
Z	300.0 mL of distilled water	

PUTTING IT ALL TOGETHER!

What would the new pH values be for each of the solutions after they are diluted by adding 100.0 mL of distilled water?

Solution	Original Solution	New Solution	Calculations
X	$V_{1}=100.0 \mathrm{~mL}$ $M_{1}=0.10 \mathrm{M} \mathrm{HCl}$ $\mathrm{pH}=$		
Y	$\mathrm{V}=200.0 \mathrm{~mL}$ $\mathrm{M}_{1}=0.20 \mathrm{M} \mathrm{NaOH}$ $\mathrm{pH}=$		
Z	$\mathrm{V}, 300.0 \mathrm{~mL}$ distilled water $\mathrm{pH}=7.00$		

5. pH OF WEAK ACID SOLUTIONS
 UNIT 4
 CH 40 S
 WIEBE

REVIEW

Which of the following diagrams shows a strong acid dissolved in water? Justify your answer.

REVIEW

Which of the following acids is a strong acid? Justify your answer.

Concentration (M)	pH of Acid 1	ph of Acid 2	ph of Acid 3	pH of Acid 4
0.010	3.44	2.00	2.92	2.20
0.050	3.09	1.30	2.58	1.73
0.10	2.94	1.00	2.42	1.55
0.50	2.69	0.30	2.08	1.16
1.00	2.44	0.00	1.92	0.98

WEAK ACIDS...

- Are reactant favored equilibriums
- Have K_{a} values to represent equilibrium position
- Require ICE tables to determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and pH

(a) Strong acid

(b) Weak acid

HAVE A PLAN OF ACTION!

FOR EXAMPLE

Hydrofluoric acid is used industrially for etching glass, cleaning metals, and manufacturing electronic parts. Determine the pH and the $\%$ ionization of a 0.10 M solution of HF .

FOR EXAMPLE

Hypochlorous acid is the active sanitizer used in swimming pools. Determine the equilibrium constant $\left(K_{a}\right)$ of a 0.100 M sample of acid if it has a pH of 4.23.

PUTTING IT ALL TOGETHER!

1. Calculate the pH and $\%$ ionization of the solution shown.

0.10 M solution of acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$.

PUTTING IT ALL TOGETHER!

2. Calculate the pH and $\%$ ionization of the solution after it has been diluted according to the picture.

PUTTING IT ALL TOGETHER - CHALLENGE!

3. What happened to the pH and \% ionization of the weak acid when it was diluted?

4. Explain why this happens using Le Chatelier's Principle.

$$
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow
$$

6. pH OF WEAK BASE SOLUTIONS

UNIT 4
CH4OS
MR. WIEBE

1

WEAK BASES

- Are reactant favored equilibriums
- Have K_{b} values to represent equilibrium position
- Require ICE tables to determine $\left[\mathrm{OH}^{-}\right]$and $\mathrm{pOH} / \mathrm{pH}$
$\mathrm{B}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{BH}^{+}+\mathrm{OH}^{-}$

$K_{b}=\frac{\left[B H^{+}\right]\left[O H^{-}\right]}{[B]}=$???

BE CAREFUL WITH WEAK BASES!

- Weak bases are the conjugate bases of weak acids!
- They are created by dissolving a soluble salt containing the weak base in water.

For example:

Weak Acid	Conj. Base (Weak Base)	Soluble Salt Containing Weak Base
HCN	$\mathrm{CN}-$	NaCN
HF	$\mathrm{F}-$	NaF
$\mathrm{CH}_{3} \mathrm{COOH}$	$\mathrm{CH}_{3} \mathrm{COO}-$	$\mathrm{NaCH}_{3} \mathrm{COO}$

IWO COMMON WEAK BASES TO RECOGNIZE:

1. Ammonia $\left(\mathrm{NH}_{3}\right)$
2. Methyamine $\left(\mathrm{CH}_{3} \mathrm{NH}_{2}\right)$

$$
\mathrm{NaCN}(\mathrm{~s}) \leftrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{CN}-(\mathrm{aq}) \quad \mathrm{CN}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{OH}^{-}+\mathrm{HCN}
$$

HAVE A PLAN OF ACTION!

5

FOR EXAMPLE

Ammonia acts as a weak base in solution. It is commonly found in household cleaning solutions such as Windex and toilet bowl cleaners. What is the pH of a 0.050 M solution of ammonia?

WORKING BACKWARDS

Calculate the K_{b} of 0.20 M weak base that has a pH of 11.30 . What is the identity of this substance?

7

7. ACIDIC \& BASIC SALTS

UNIT 4 - ACIDS \& BASES CH4OS MR. WIEBE

ALL SALTS ARE NOT CREATED EQUALLY

- Soluble salts are ionic compounds that readily dissolve in water.
- Soluble salts can create acidic, basic, or neutral solutions when they dissolve, depending on their make-up.
- Acidic salts increase the $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in solution when they dissolve.
- Basic salts increase the $\left[\mathrm{OH}^{3}\right]$ in solution when they dissolve.
- Neutral salts do not alter either $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] or $\left[\mathrm{OH}^{-}\right]$when they dissolve.

NEUTRAL SALTS

When the acid and base parents are both strong the salt is always neutral.

NEUTRAL SALTS

Type of Salt	Examples	Comment	pH of solution
Cation is from a strong base, anion from a strong acid	$\mathrm{KCl}, \mathrm{KNO}_{3}$ NaCl NaNO	Both ions are neutral	Neutral

These salts simply dissociate in water:

$$
\mathrm{KCl}(\mathrm{~s}) \rightarrow
$$

BASIC SALTS

$\mathrm{No}^{+}(\mathrm{aq})$ ions are produced; some $\mathrm{OH}^{-}(\mathrm{aq})$ ions are produced.

When the acid parent is weak and the base parent is strong the salt is always basic.

5

BASIC SALTS

Type of Salt	Examples	Comment	pH of solution
Cation is from a strong base, anion from a weak acid	$\mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ $\mathrm{KCN}, \mathrm{NaF}$	Cation is neutral, Anion is basic	Basic

The basic anion can accept a proton from water:
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \leftrightarrows$

ACIDIC SALTS

When the acid parent is strong and the base parent is weak
the salt is always acidic. the salt is always acidic.

ACIDIC SALTS

Type of Salt	Examples	Comment	pH of solution
Cation is the conjugate acid of a weak base, anion is from a strong acid	$\mathrm{NH}_{4} \mathrm{Cl}$, $\mathrm{NH}_{4} \mathrm{NO}_{3}$	Cation is acidic, Anion is neutral	Acidic

The acidic cation can act as a proton donor:
$\mathrm{NH}_{4}{ }^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O} \leftrightarrows$

EXAMPLE \# 1

A chemist dissolves a mass of sodium nitrite in distilled water. Will the resulting aqueous solution be acidic, basic, or neutral? Support your claim.

EXAMPLE \#2

A chemist dissolves a mass of ammonium nitrate in distilled water. Will the resulting aqueous solution be acidic, basic, or neutral? Support your claim.

ACID-BASE INDICATORS

Indicator	$\mathbf{p H}$ Range in Which Colour Change Occurs	Colour Change as pH Increases		
Methyl violet	$0.0-1.6$	yellow to blue		
Thymol blue	$1.2-2.8$	red to yellow		
Orange IV	$1.4-2.8$	red to yellow		
Methyl orange	$3.2-4.4$	red to yellow		
Bromcresol green	$3.8-5.4$	yellow to blue		
Methyl red	$5.8-6.0$	red to yellow		
Chlorophenol red	$6.0-7.6$	yellow to red		
Bromthymol blue	$6.6-8.0$	yellow to blue		
Phenol red	$6.8-8.0$	yellow to red to amber		
Neutral red	$8.0-9.6$	yellow to blue		
Thymol blue	$8.2-10.0$	colourless to pink		
Phenolphthalein	$9.4-10.6$	colourless to blue Thymolphthalein $10.1-12.0$		yellow to red
:---				
Alizarin yellow				

SOLUBILITY PRODUCT CONSTANTS AT $25^{\circ} \mathrm{C}$

Name	Formula	$\mathrm{K}_{s p}$
Barium carbonate	BaCO_{3}	2.6×10^{-9}
Barium chromate	BaCrO_{4}	1.2×10^{-10}
Barium sulphate	BaSO_{4}	1.1×10^{-10}
Calcium carbonate	CaCO_{3}	5.0×10^{-9}
Calcium oxalate	$\mathrm{CaC}_{2} \mathrm{O}_{4}$	2.3×10^{-9}
Calcium sulphate	CaSO_{4}	7.1×10^{-5}
Copper(I) iodide	CuI	1.3×10^{-12}
Copper(II) iodate	$\mathrm{Cu}\left(\mathrm{IO}_{3}\right)_{2}$	6.9×10^{-8}
Copper(II) sulphide	CuS	6.0×10^{-37}
Iron(II) hydroxide	$\mathrm{Fe}(\mathrm{OH})_{2}$	4.9×10^{-17}
Iron(II) sulphide	FeS	6.0×10^{-19}
Iron(III) hydroxide	$\mathrm{Fe}(\mathrm{OH})_{3}$	2.6×10^{-39}
Lead(II) bromide	PbBr_{2}	6.6×10^{-6}
Lead(II) chloride	PbCl_{2}	1.2×10^{-5}
Lead(II) iodate	$\mathrm{Pb}\left(\mathrm{IO}_{3}\right)_{2}$	3.7×10^{-13}
Lead(II) iodide	PbI_{2}	8.5×10^{-9}
Lead(II) sulphate	PbSO_{4}	1.8×10^{-8}
Magnesium carbonate	MgCO_{3}	6.8×10^{-6}
Magnesium hydroxide	$\mathrm{Mg}(\mathrm{OH})_{2}$	5.6×10^{-12}
Silver bromate	AgBrO_{3}	5.3×10^{-5}
Silver bromide	AgBr	5.4×10^{-13}
Silver carbonate	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	8.5×10^{-12}
Silver chloride	AgCl	1.8×10^{-10}
Silver chromate	$\mathrm{Ag}_{2} \mathrm{CrO}_{4}$	1.1×10^{-12}
Silver iodate	AgIO_{3}	3.2×10^{-8}
Silver iodide	AgI	8.5×10^{-17}
Strontium carbonate	SrCO_{3}	5.6×10^{-10}
Strontium fluoride	SrF_{2}	4.3×10^{-9}
Strontium sulphate	SrSO_{4}	3.4×10^{-7}
Zinc sulphide	ZnS	2.0×10^{-25}

Solubility of Common Compounds in Water

The term soluble here means $>0.1 \mathrm{~mol} / \mathrm{L}$ at $25^{\circ} \mathrm{C}$.

Periodic Chart of Ions

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} 1 \\ \mathbf{H} \\ \text { Hydrogen } \\ 1.0 \end{gathered}$																	$\begin{gathered} 2 \\ \mathrm{He} \\ \text { Helium } \\ 4.0 \end{gathered}$
$\begin{gathered} 3 \\ \mathrm{Li} \\ \text { Lithium } \\ 6.9 \end{gathered}$	4 Be Beryllium 9.0					$\begin{aligned} & 14 \\ & \mathrm{Si} \\ & \text { Silicon } \\ & 28.1 \end{aligned}$	$\begin{array}{r} - \text { Symb } \\ \text { Nam } \\ \text { Atom } \end{array}$					$\begin{gathered} 5 \\ \text { B } \\ \text { Boron } \\ 10.8 \end{gathered}$	C Catbon 12.0	$\mathbf{7}$ \mathbf{N} Nitrogen 14.0	8 \mathbf{O} Oxyen 16.0	9 \mathbf{F} Fluorine 19.0	$\begin{aligned} & 10 \\ & \mathrm{Ne} \\ & \text { Neon } \\ & 20.2 \end{aligned}$
$\begin{gathered} 11 \\ \mathrm{Na} \\ \text { Sodium } \\ 23.0 \end{gathered}$	$\mathbf{1 2}$ $\mathbf{M g}$ Magnesium 24.3											$\begin{gathered} 13 \\ \text { Al } \\ \text { Aluminum } \\ 27.0 \end{gathered}$	$\begin{gathered} \hline 14 \\ \hline \mathrm{Si} \\ \text { Silicon } \\ 28.1 \end{gathered}$	15 \mathbf{P} Phosphous 31.0	$\begin{gathered} 16 \\ \mathbf{S} \\ \text { Suphur } \\ 32.1 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ \mathrm{Chlorine} \\ 35.5 \end{gathered}$	$\begin{aligned} & \hline 18 \\ & \mathrm{Ar} \\ & \text { Agon } \\ & 39.9 \end{aligned}$
$\begin{gathered} 19 \\ \mathbf{K} \\ \text { Potassium } \\ 39.1 \end{gathered}$	$\begin{gathered} 20 \\ \text { Ca } \\ \text { Calcium } \\ 40.1 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ \text { Scandum } \\ 45.0 \end{gathered}$	$\begin{gathered} \hline 22 \\ \mathrm{Ti} \\ \text { Thanium } \\ 47.9 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ \text { Vanadium } \\ 50.9 \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr}^{2} \\ \text { Chromium } \\ 52.0 \end{gathered}$	$\begin{array}{\|c\|} \hline 25 \\ M n \\ \text { Manganese } \\ 54.9 \end{array}$	$\begin{aligned} & 26 \\ & \text { Fe } \\ & \text { lon } \\ & 55.8 \end{aligned}$	$\begin{aligned} & 27 \\ & \text { Co } \\ & \text { Cobatt } \\ & 58.9 \end{aligned}$	28 Ni Nickel 58.7	$\begin{aligned} & 29 \\ & \mathrm{Cu} \\ & \text { Copper } \\ & 63.5 \end{aligned}$	$\begin{aligned} & 30 \\ & \text { Zn } \\ & \text { Zno } \\ & 65.4 \end{aligned}$	31 Ga Gallium 69.7	$\begin{gathered} 32 \\ \text { Ge } \\ \text { Germanium } \\ 72.6 \end{gathered}$	33 As Asenic 74.9	$\begin{gathered} 34 \\ \text { Se } \\ \text { Selenium } \\ 79.0 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ \text { Bromine } \\ 79.9 \end{gathered}$	$\begin{gathered} 36 \\ \mathrm{Kr} \\ \text { Kyppon } \\ 83.8 \end{gathered}$
$\begin{gathered} 37 \\ \text { Rb } \\ \text { Rubidium } \\ 85.5 \end{gathered}$	38 Sr Stontum 87.6	$\begin{gathered} 39 \\ \mathbf{Y} \\ \text { Yutium } \\ 88.9 \end{gathered}$	$\begin{gathered} 40 \\ \text { Zr } \\ \text { Zriconium } \\ 91.2 \end{gathered}$	$\begin{gathered} \hline 41 \\ \mathrm{Nb} \\ \text { Niobium } \\ 99.9 \end{gathered}$	42 Mo Molydobum 95.9	43 Tc Technetium (98)	44 $\mathbf{R u}$ Ruthenium 101.1	$\begin{gathered} \hline 45 \\ \text { Rh } \\ \text { Rhnodium } \\ 102.9 \end{gathered}$	46 Pd Paladum 106.4	$\begin{gathered} \hline 47 \\ \mathrm{Ag} \\ \text { silver } \\ 107.9 \end{gathered}$	$\begin{gathered} 48 \\ \text { Cd } \\ \text { Cadmium } \\ 112.4 \end{gathered}$	49 In Indium 114.8	$\begin{gathered} 50 \\ \text { Sn } \\ \text { Tin } \\ 118.7 \end{gathered}$	$\begin{gathered} 51 \\ \text { Sb } \\ \text { Antimony } \\ 121.8 \end{gathered}$	$\begin{gathered} 52 \\ \mathrm{Te} \\ \text { Tellurum } \\ 127.6 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ \text { lodine } \\ 126.9 \end{gathered}$	$\begin{gathered} 54 \\ \text { Xe } \\ \text { Xenon } \\ 131.3 \end{gathered}$
55 $\mathbf{C s}$ Cesium 132.9	56 Ba Barium 137.3	57 La Lanthanum 138.9	$\begin{gathered} \hline 72 \\ \text { Hf } \\ \text { Haftium } \\ 178.5 \end{gathered}$	$\begin{gathered} \hline 73 \\ \mathrm{Ta} \\ \text { Tantaum } \\ 180.9 \end{gathered}$	$\begin{gathered} 74 \\ \text { W } \\ \text { Tungsten } \\ 183.8 \end{gathered}$	75 Re Rhenium 186.2	76 Os Osmium 190.2	$\begin{gathered} \hline 77 \\ \mathrm{lr} \\ \text { lindium } \\ 192.2 \end{gathered}$	78 Pt Platinum 195.1	$\begin{gathered} \hline 79 \\ \mathrm{Au} \\ \text { Gold } \\ 197.0 \end{gathered}$	80 Hg Mecury 200.6	81 TI Thalium 204.4	$\begin{gathered} \hline 82 \\ \mathrm{~Pb} \\ \text { Lead } \\ 207.2 \end{gathered}$	83 Bi Bismuth 209.0	84 Po Pobonium (209)	85 $\mathbf{A t}$ Astatine (210)	$\begin{gathered} 86 \\ \text { Rn } \\ \text { Radon } \\ \text { (222) } \end{gathered}$
87 Fr Francium (223)	$\begin{gathered} 88 \\ \text { Ra } \\ \text { Radium } \\ (226) \end{gathered}$	$\begin{gathered} \hline 89 \\ \mathbf{A c} \\ \text { Actinum } \\ (227) \end{gathered}$	104 $\mathbf{R f}$ Rutheroforium (261)	105 Db Dubnium (262)	$\begin{gathered} 106 \\ \mathrm{Sg} \\ \text { Seaborgum } \\ (263) \end{gathered}$	107 Bh Bohrium (262)	$\begin{aligned} & 108 \\ & \text { Hs } \\ & \text { Hassium } \\ & (265) \end{aligned}$	$\begin{gathered} 109 \\ \text { Mt } \\ \text { Meitnerium } \\ (266) \end{gathered}$									

	∞ ¢
	৪
'00'ZI ${ }^{\text {ID }}$ zI О fo sspu uo paspg	

