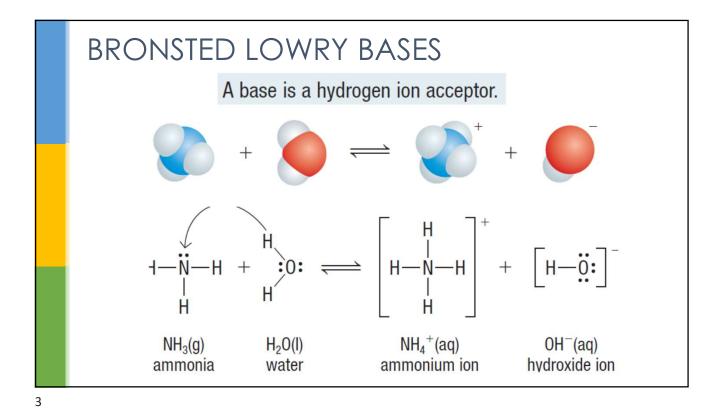
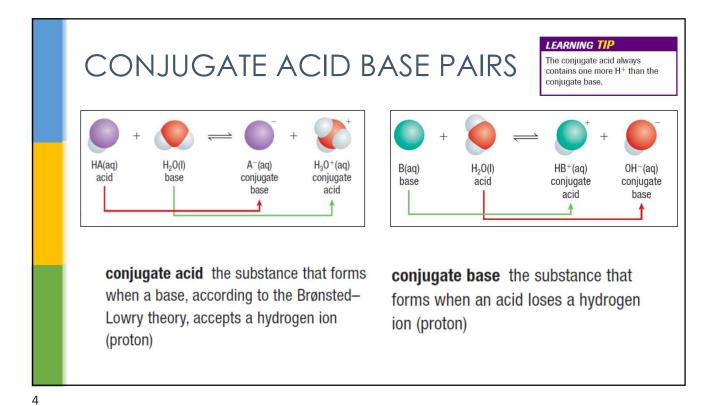
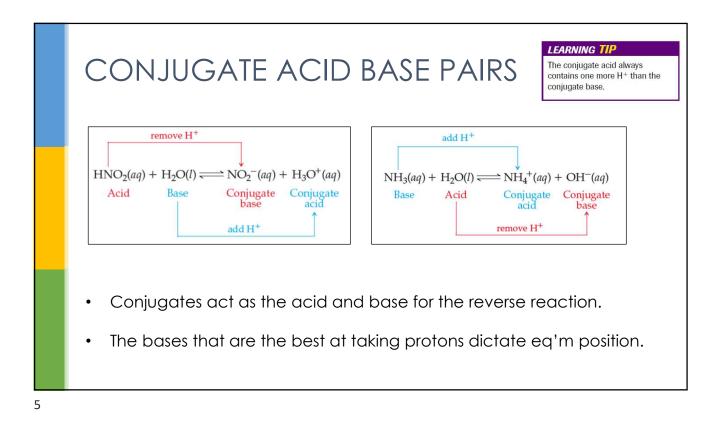
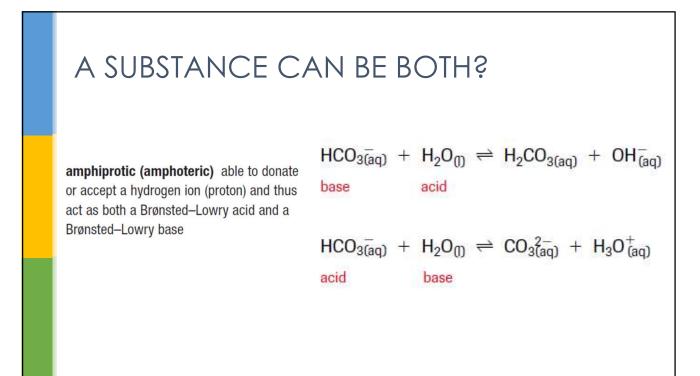
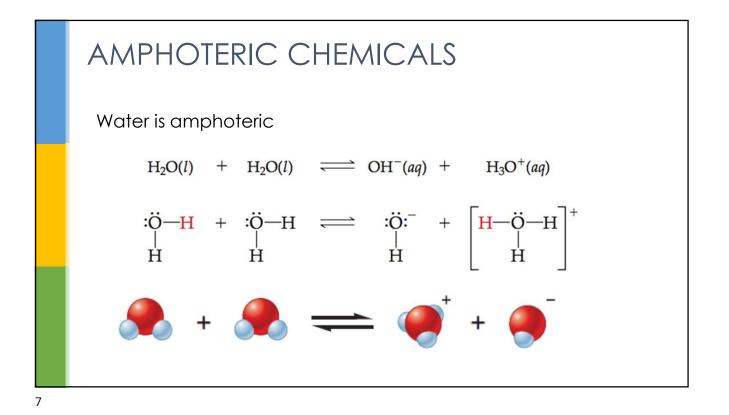

CHEMISTRY 405 The Alchemíst's Notebook


UNIT 4 – ACIDS & BASES

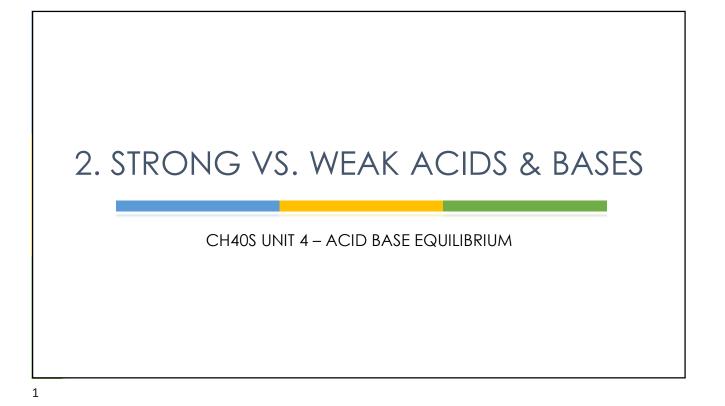


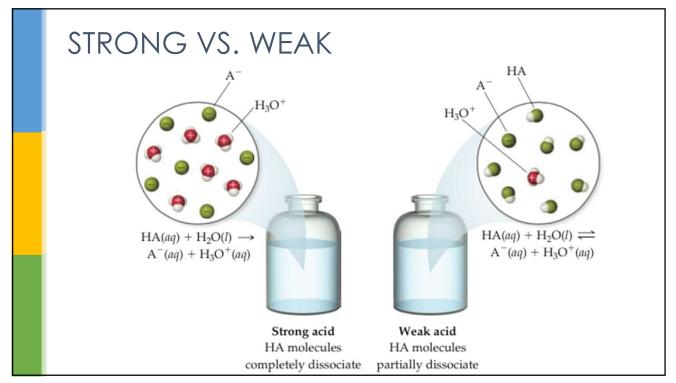

NAME:_____

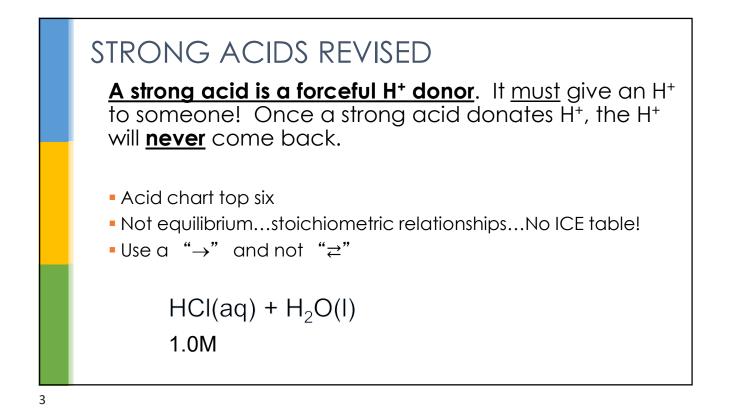


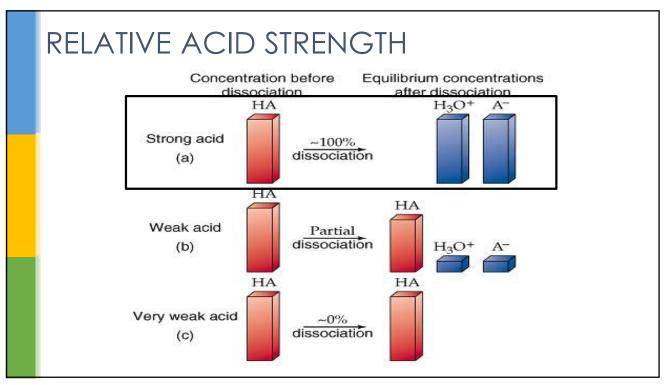


FOR EXAMPLE

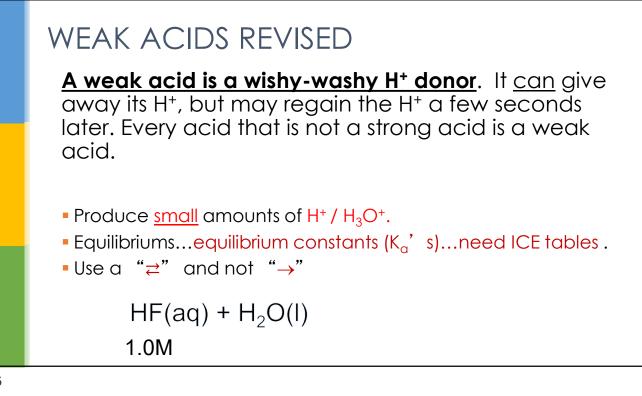

Write the Bronsted-Lowery equations for the following <u>acids</u> in aqueous solution and identify the <u>conjugate acid-base pairs</u>:


Hydrochloric acid (HCl)

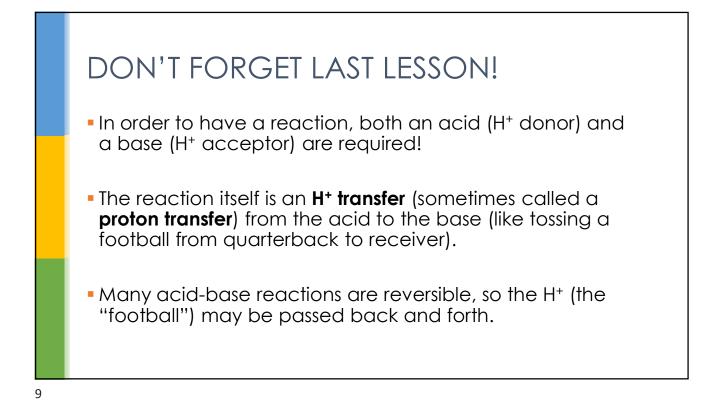

Acetic acid (CH₃COOH)

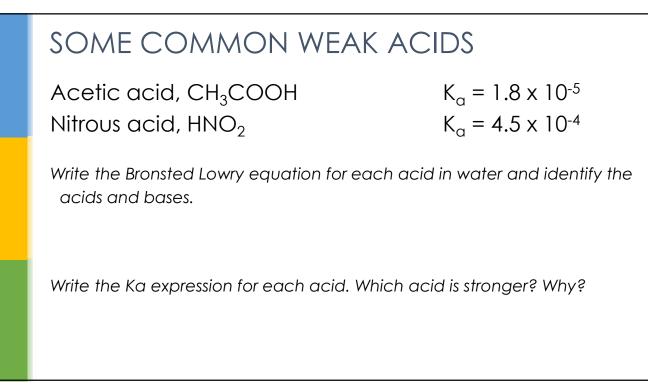

Anilinium ion ($C_6H_5NH_3^+$)

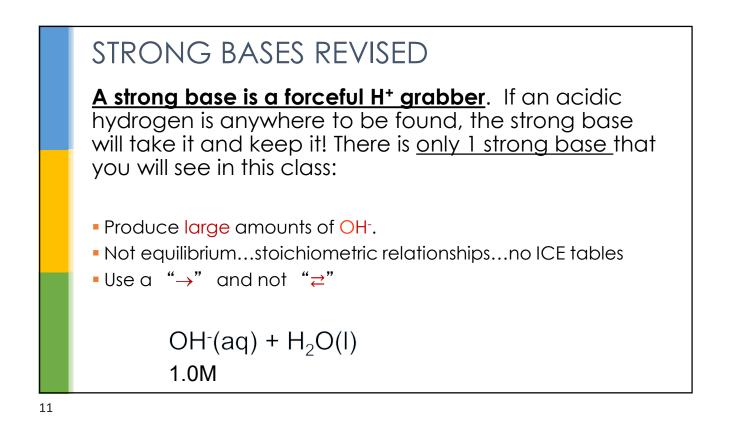
FOR EXAMPLE
Write the Bronsted-Lowery equations for the following <u>bases</u> in aqueous solution and identify the <u>conjugate acid-base pairs</u> :
Methylamine (CH_3NH_2)
Ammonia (NH ₃)

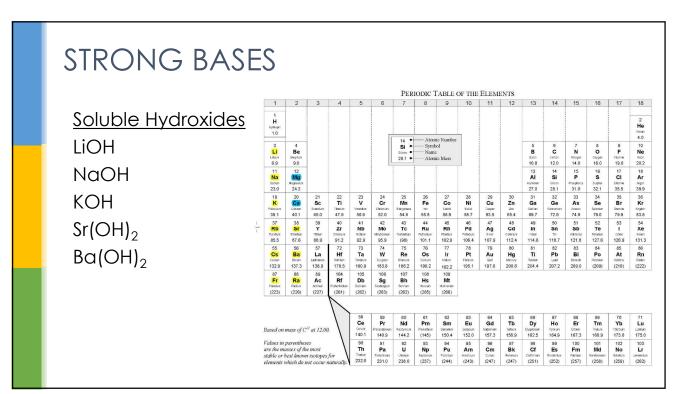


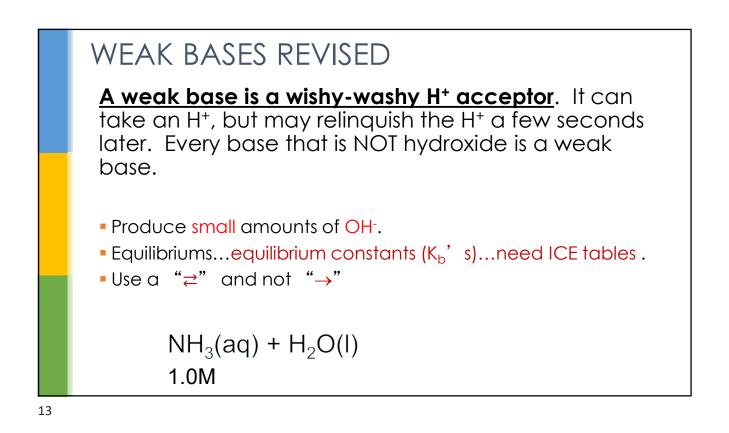


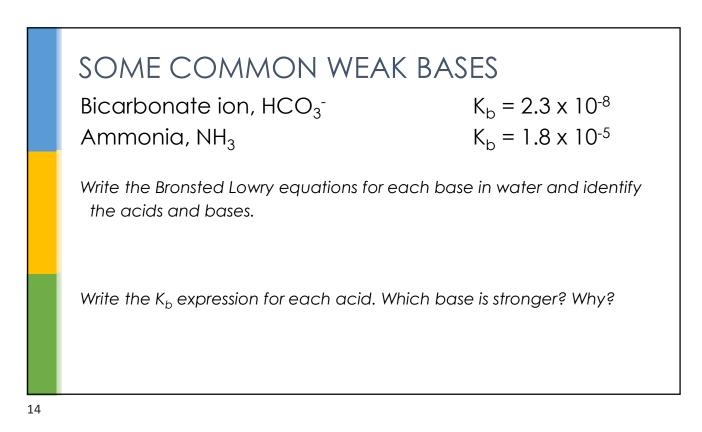


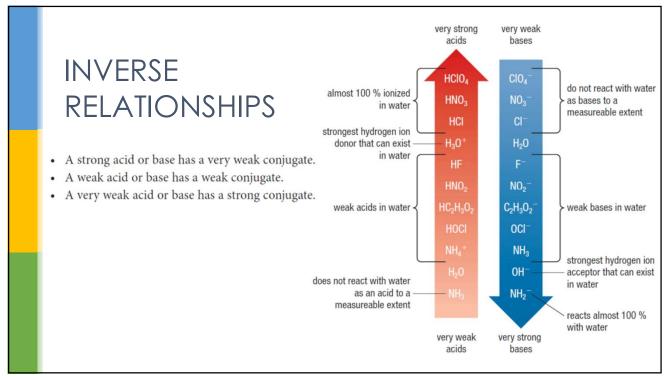

_	Name of Acid	Acid		Base	K _a	
	Perchloric	HClO ₄	\rightarrow	H ⁺ + ClO ₄ ⁻	very large	
	Hydriodic Hydrobromic	HI	\rightarrow	$H^+ + I^- \dots \dots$	very large	
STRONG	Hydrobromic	HBr	\rightarrow	H ⁺ + Br ⁻	very large	
		HCl	\rightarrow	H ⁺ + Cl ⁻	very large	
ACIDS	Nitric	HNO3	\rightarrow	$H^{+} + NO_{3}^{-}$	very large	
	Sulphurie		\rightarrow	$H^+ + HSO_4^-$	very large	
	Hydronium Ion	H ₃ O ⁺	₽	$\mathrm{H^{+}}+\mathrm{H_{2}O}$	1.0 1.7×10 ⁻¹ ►	
	Iodic	HIO ₃	$\stackrel{\rightarrow}{\leftarrow}$	H ⁺ + IO ₃ ⁻	1.7×10^{-1}	
	Oxalic	H ₂ C ₂ O ₄	\rightleftharpoons	$H^+ + HC_2O_4^-$	5.9×10^{-2}	ľ –
	Sulphurous $(SO_2 + H_2O)$	H ₂ SO ₃	\rightleftharpoons	$\mathrm{H^{+}}+\mathrm{HSO_{3}}^{-}$	1.5×10^{-2}	
	Hydrogen sulphate ion	HSO ₄ ⁻	$\stackrel{>}{\leftarrow}$	$H^+ + SO_4^{2-}$	1.2×10^{-2}	
	Phosphoric					
	Hexaaquoiron ion, iron(III) ion	$Fe(H_2O)_6^{3+}$	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + Fe(H_2O)_5(OH)^{2+}$	6.0×10^{-3}	
	Citric	H ₃ C ₆ H ₅ O ₇	\rightleftharpoons	$H^+ + H_2C_6H_5O_7$	7.1×10^{-4}	
	Nitrous	HNO ₂	$\stackrel{\rightarrow}{\leftarrow}$	$H^+ + NO_2^-$	4.6×10^{-4}	
	Hydrofluoric	HF	$\stackrel{\rightarrow}{\leftarrow}$	$H^+ + F^-$	3.5×10^{-4}	
	Methanoic, formic					
	Hexaaquochromium ion, chromium(III) ion .	$Cr(H_2O)_6^{3+}$	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + Cr(H_2O)_5(OH)^{2+}$	1.5×10^{-4}	
	Benzoic	C ₆ H ₅ COOH	$\stackrel{\rightarrow}{\leftarrow}$	$H^+ + C_6 H_5 COO^-$	6.5×10 ⁻⁵	2
	Hydrogen oxalate ion	HC ₂ O ₄ ⁻	$\stackrel{\scriptstyle \rightarrow}{\leftarrow}$	$H^{+} + C_2 O_4^{2-}$	6.4×10^{-5} 1.8×10^{-5} 1.7×10^{-5}	
	Ethanoic, acetic	СН3СООН	\rightleftharpoons	$H^+ + CH_3COO^-$	1.8×10^{-5}	5
	Dihydrogen citrate ion	H ₂ C ₆ H ₅ O ₇ ⁻	$\stackrel{\rightarrow}{\leftarrow}$	$H^+ + HC_6H_5O_7^{2-}$	1.7×10^{-5}	1

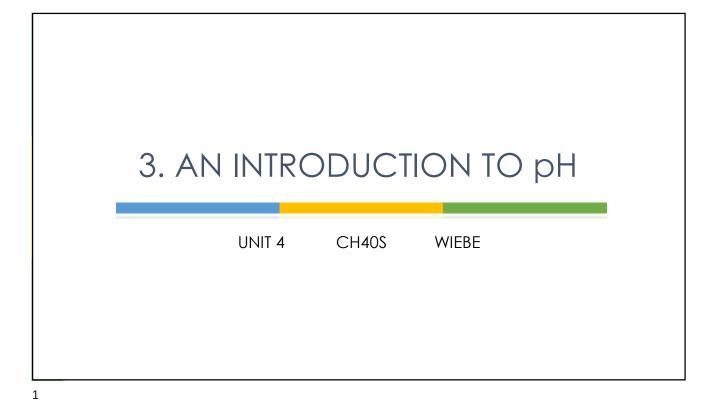


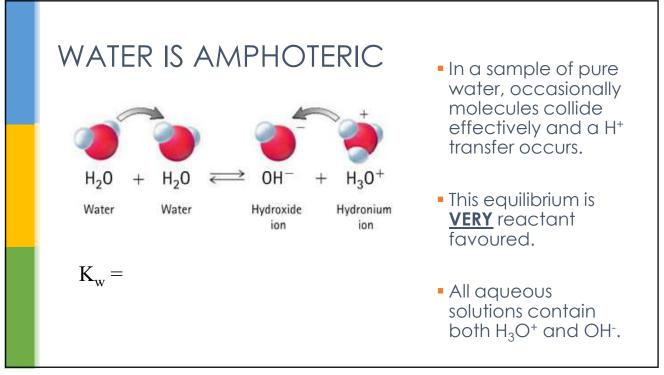



	Name of Acid	Acid	Base	K _a
	Perchloric	HClO ₄ –	\rightarrow H ⁺ + ClO ₄ ⁻	very large
	Hydriodic Hydrobromic	HI –	\rightarrow H ⁺ + I ⁻	very large
STRONG	Hydrobromic	HBr –	\rightarrow H ⁺ + Br ⁻	very large
	W Hydrochloric	HCl -	\rightarrow H ⁺ + Cl ⁻	very large
ACIDS	Nitric		×	
	Sulphuric			
	Hydronium Ion			
	Iodic	8 6	9	
	Oxalic			
	Sulphurous $(SO_2 + H_2O)$			
	Hydrogen sulphate ion			
	Phosphoric			
	Hexaaquoiron ion, iron(III) ion	$Fe(H_2O)_6^{3+}$	$\stackrel{>}{\simeq}$ H ⁺ + Fe(H ₂ O) ₅ (OH)	$^{2+}$ 6.0×10^{-3}
WEAK	Citric	H ₃ C ₆ H ₅ O ₇ 4	\rightleftharpoons H ⁺ + H ₂ C ₆ H ₅ O ₇ ⁻	7.1×10^{-4}
	Nitrous	HNO ₂ ç	$\overrightarrow{H}^+ + NO_2^-$	4.6×10^{-4}
ACIDS	Hydrofluoric	HF 7	$\overrightarrow{H}^+ + F^-$	3.5×10^{-4}
	Hexaaquochromium ion, chromium(III) ior	1 $Cr(H_2O)_6^{3+}$	$\stackrel{\scriptstyle{\rightarrow}}{=} \mathrm{H^{+}} + \mathrm{Cr}(\mathrm{H}_{2}\mathrm{O})_{5}(\mathrm{OH})$	$^{2+}$ 1.5×10^{-4}
	Benzoic	C ₆ H ₅ COOH ₹	H ⁺ + C ₆ H ₅ COO ⁻	6.5×10 ⁻⁵ 9
	Benzoic Hydrogen oxalate ion Ethanoic, acetic	HC ₂ O ₄ - c	$ \stackrel{\longrightarrow}{\simeq} H^+ + C_2 O_4^{2-} \dots $	6.4×10 ⁻⁵
	Ethanoic, acetic	CH3COOH 4	\Rightarrow H ⁺ + CH ₃ COO ⁻	
	Dihydrogen citrate ion	$\dots H_2 C_6 H_5 O_7 = \overline{\epsilon}$	H ⁺ + HC ₆ H ₅ O ₇ ²⁻	1.7×10^{-5}



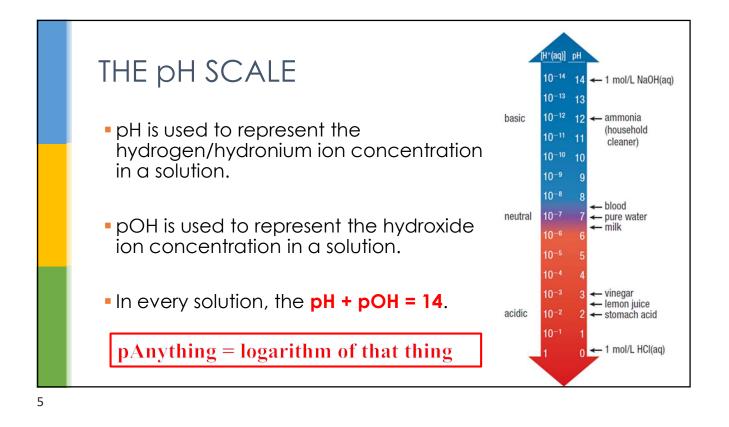


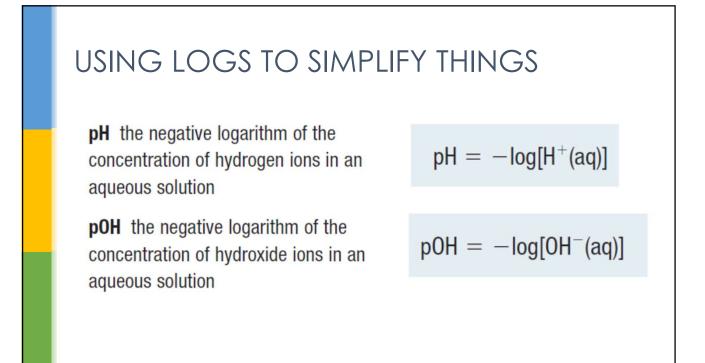


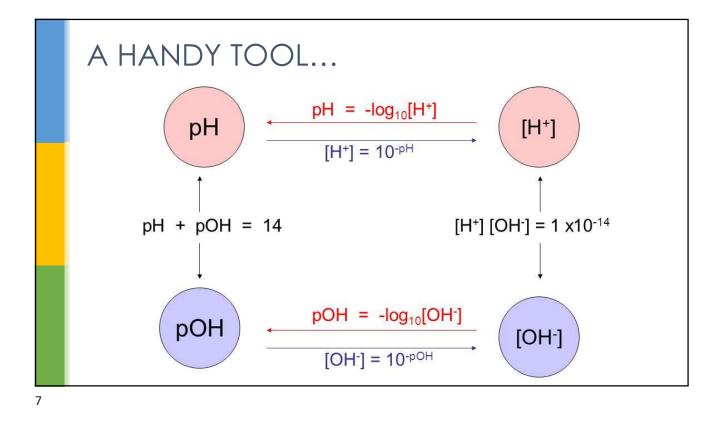


AQUEOUS SOLUTION RELATIONSHIPS

In neutral solutions

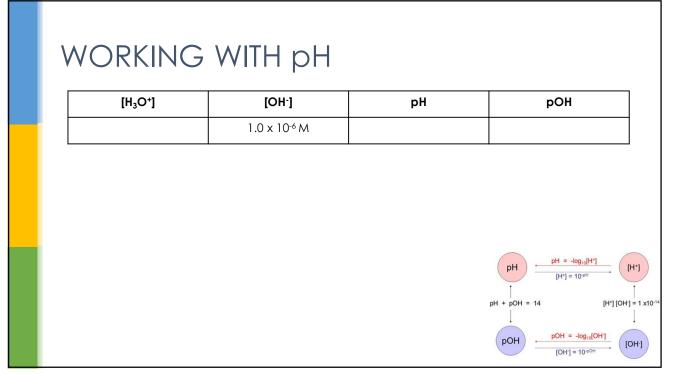

In acidic solutions

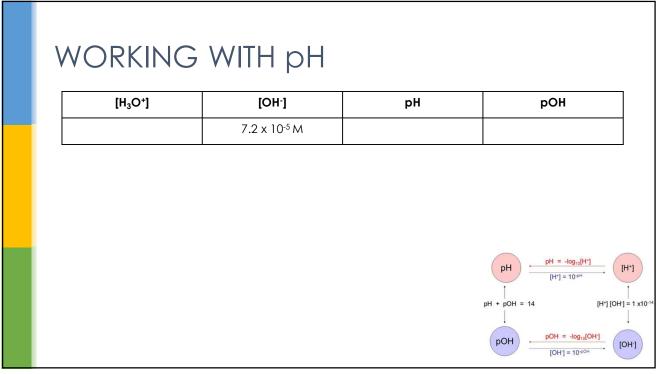

In basic solutions

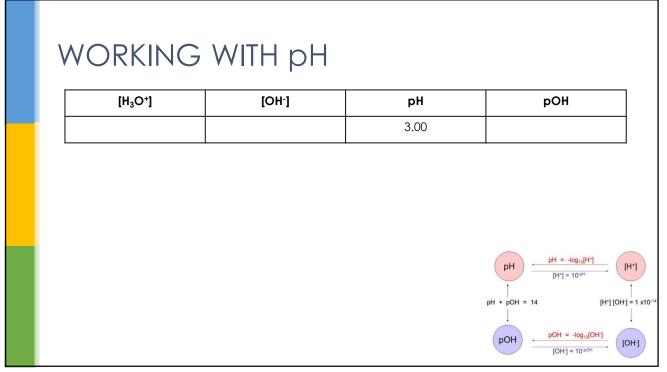

 $[H^{+}_{(aq)}] = [OH^{-}_{(aq)}]$ $[H^{+}_{(aq)}] > [OH^{-}_{(aq)}]$ $[H^{+}_{(aq)}] < [OH^{-}_{(aq)}]$

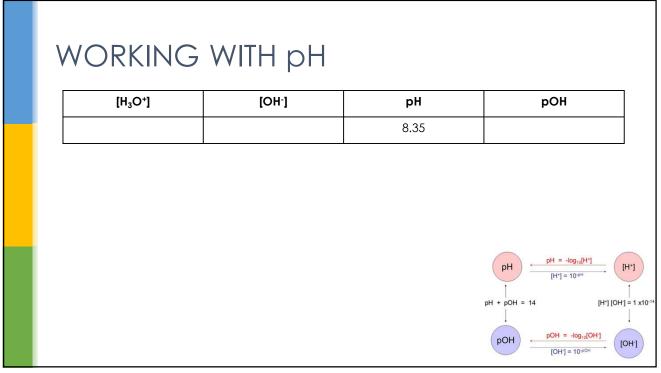
3

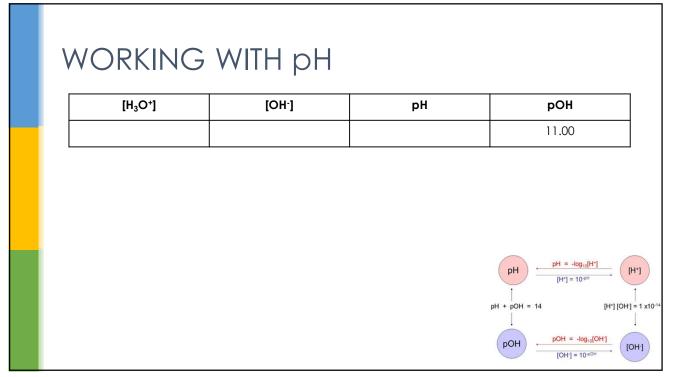
	[H₃O⁺]	WORK	[OH [.]]	Acid Base Neutral
1.	1.0 x 10 ⁻⁸ M			
2.			1.0 x 10 ⁻¹⁰ M	
3.	1.0 x 10 ⁻⁷ M			

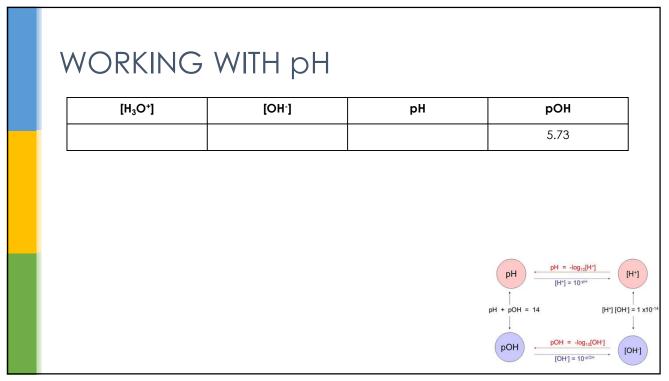


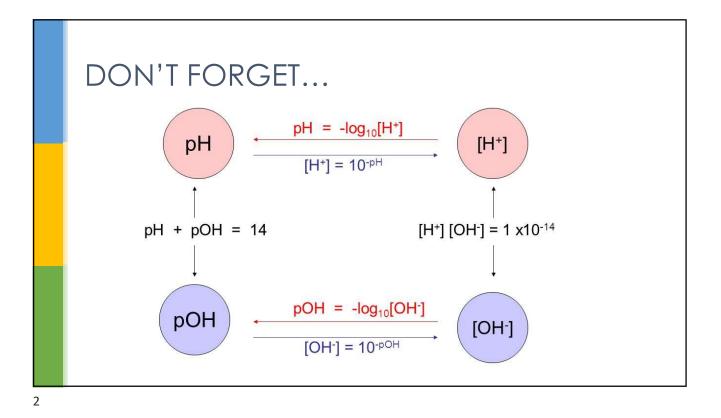


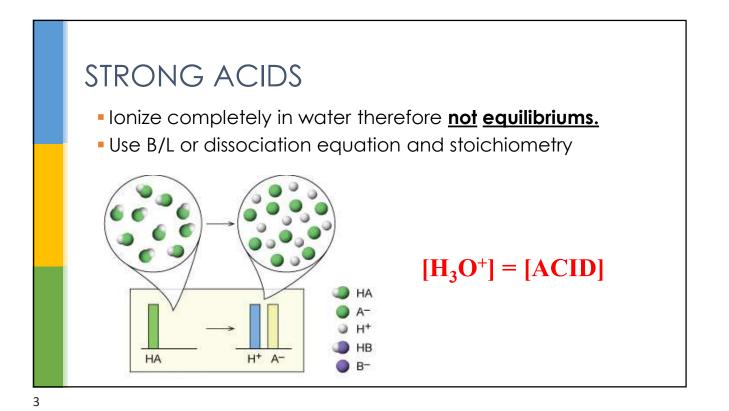


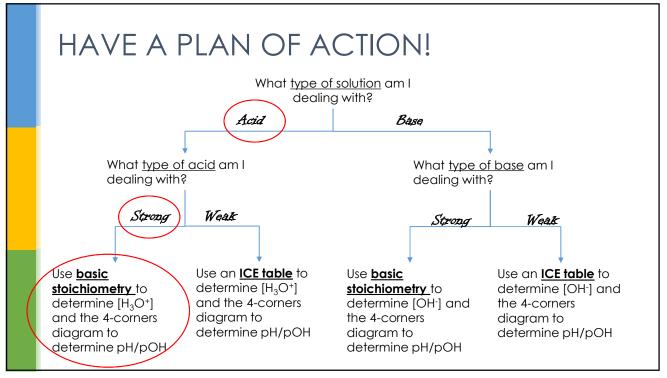

WORKING	WITH pH		
[H ₃ O*]	[OH-]	рН	рОН
1.0 x 10 ⁻⁴ M			
			PHlog ₁₀ [H ⁺] [H ⁺] = 10 ^{-pH} , [H ⁺]
			pH + pOH = 14 [H*] [OH] = 1 x10 ⁻¹
			POH = -log ₁₀ [OH] [OH] = 10% ^{OH}

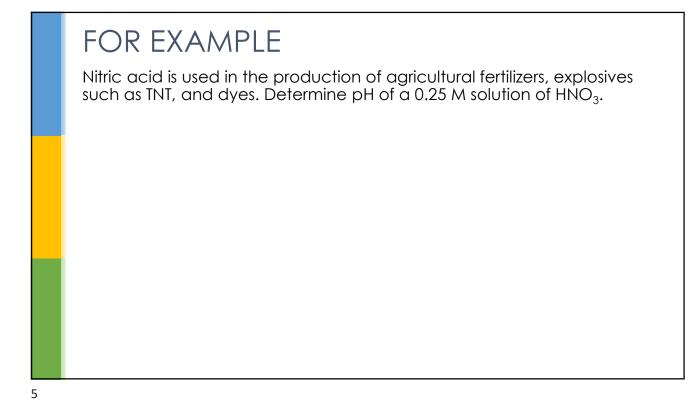

١	WORKING	WITH pH		
	[H ₃ O ⁺]	[OH [.]]	рН	рОН
	2.3 x 10 ⁻² M			
				pH = -log ₁₀ [H*] [H*]
				$pH + pOH = 14 \qquad [H'] = 10^{\phi H} \qquad [H'] = 1 \times 10^{\phi}$ $pOH + pOH = 14 \qquad [H'] [OH] = 1 \times 10^{\phi}$ $pOH \qquad (OH] = 10^{\phi OH} \qquad [OH]$

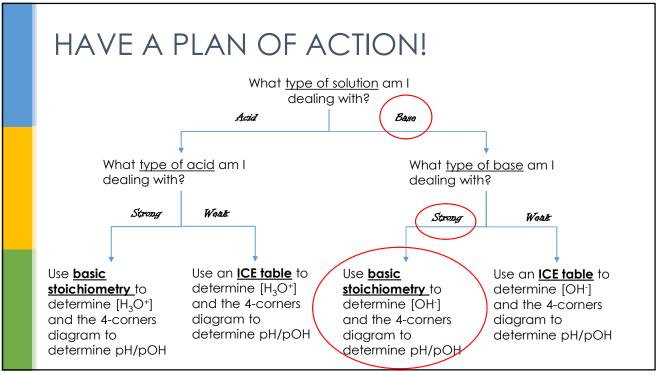












STRONG BASES Soluble hydroxides → dissociate completely in water Not equilibriums...use dissociation equations and stoichiometry

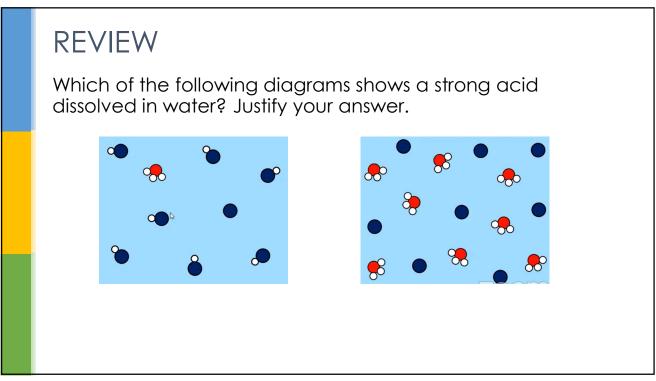
FOR EXAMPLE

Calcium hydroxide is an important component of cement, plasters, and mortars. It is also sometimes used to make your pickles extra crunchy! Calculate the pH of a $0.125 \text{ M} \text{ Ca}(\text{OH})_2$ solution.

PUTTING IT ALL TOGETHER!

Calculate the pH of each of the following solutions and ranks them from most to least acidic.

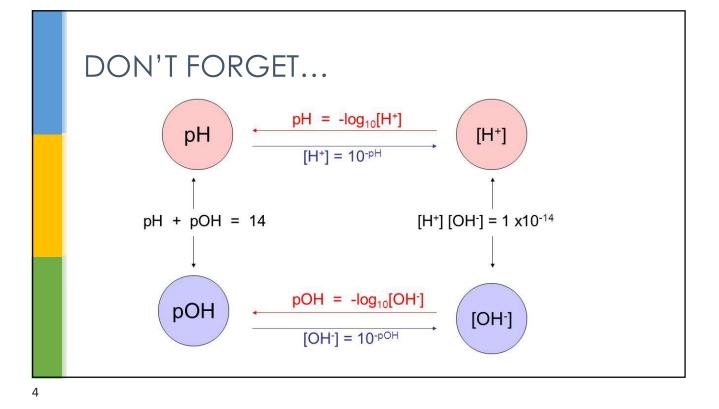
Solution	Volume and Molarity	Calculations
X	100.0 mL of 0.10 M HCI	
Y	200.0 mL of 0.20 M NaOH	
Z	300.0 mL of distilled water	

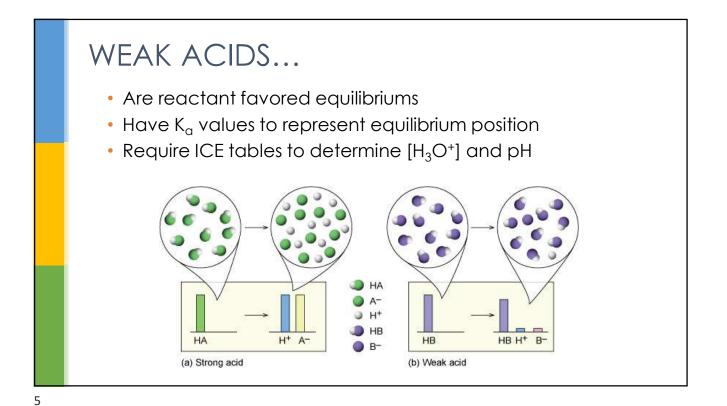

9

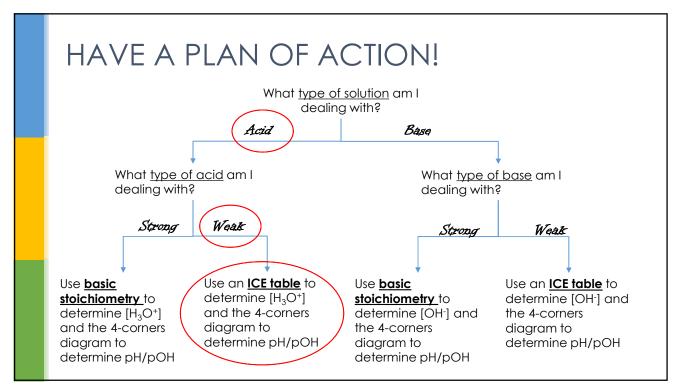
PUTTING IT ALL TOGETHER!

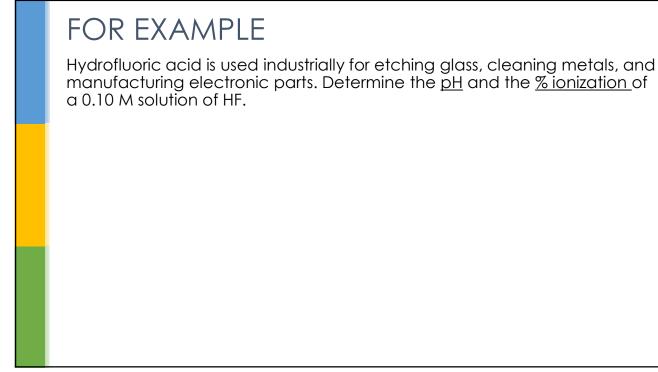
What would the new pH values be for each of the solutions after they are <u>diluted</u> by adding 100.0 mL of distilled water?

Solution	Original Solution	New Solution	Calculations
Х	V ₁ = 100.0 mL M ₁ = 0.10 M HCl pH =		
Y	V ₁ = 200.0 mL M ₁ = 0.20 M NaOH pH =		
Z	V ₁ = 300.0 mL distilled water pH = 7.00		

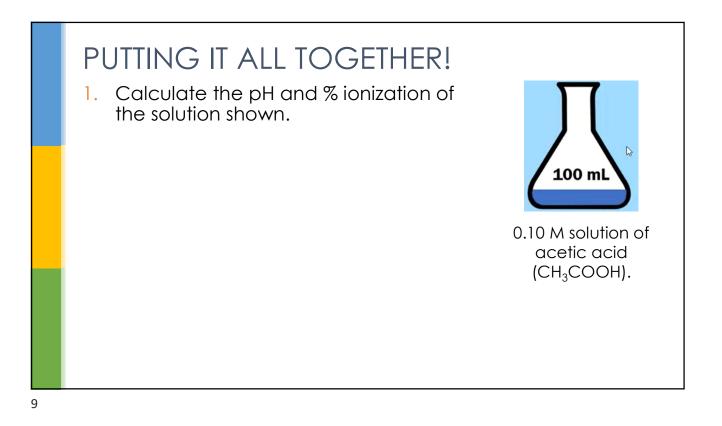

5. pH	OF WE/	ak acie	d Solutio	ons
	UNIT 4	CH40S	WIEBE	

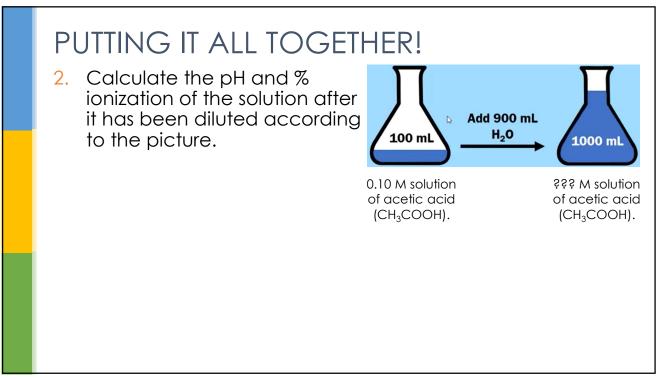


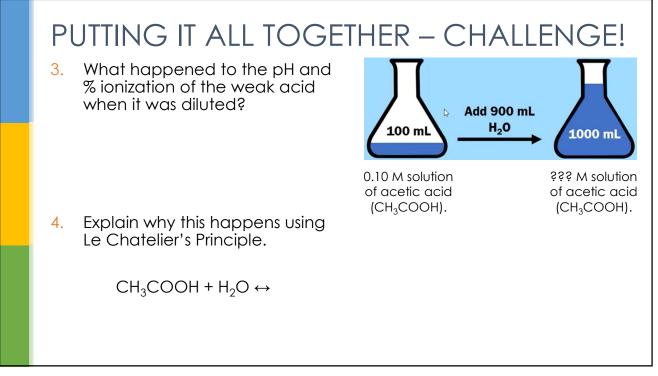

REVIEW


Which of the following acids is a strong acid? Justify your answer.

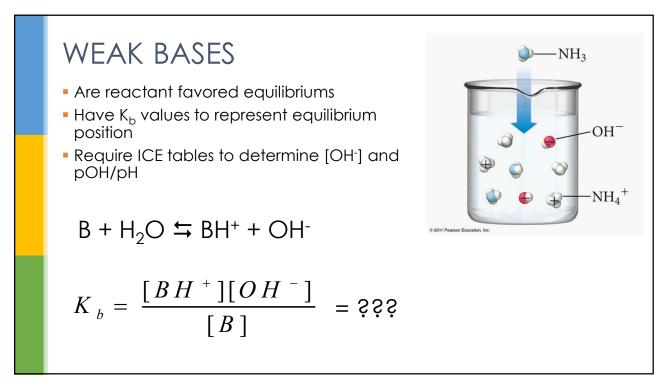
Concentration (M)	pH of Acid 1	ph of Acid 2	ph of Acid 3	pH of Acid 4
0.010	3.44	2.00	2.92	2.20
0.050	3.09	1.30	2.58	1.73
0.10	2.94	1.00	2.42	1.55
0.50	2.69	0.30	2.08	1.16
1.00	2.44	0.00	1.92	0.98

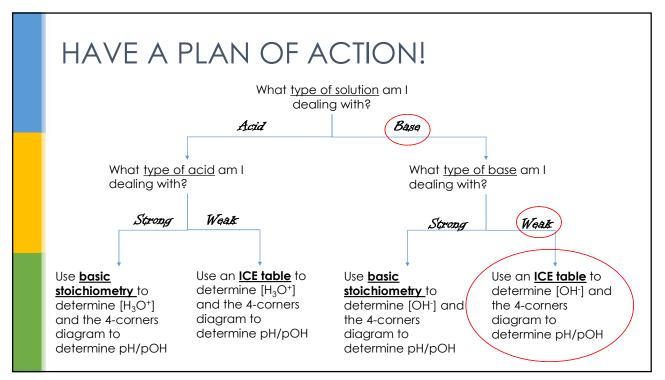






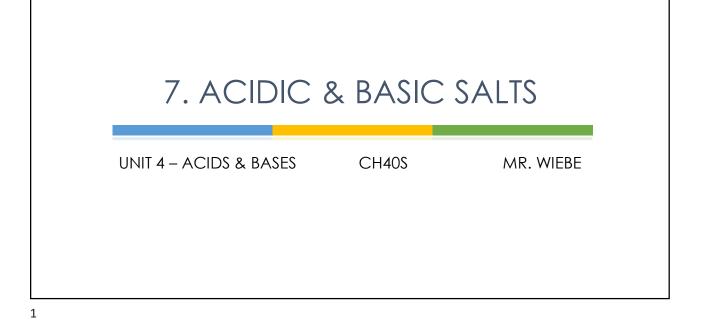
FOR EXAMPLE

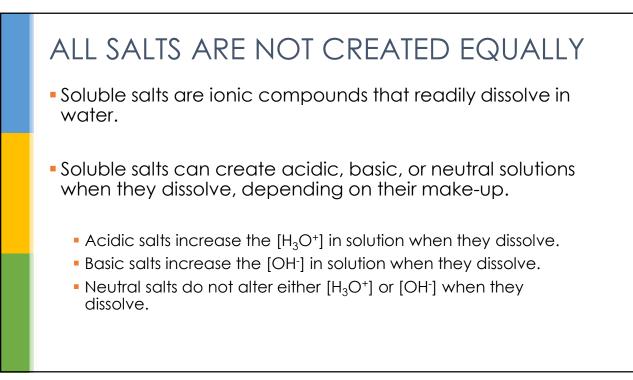

Hypochlorous acid is the active sanitizer used in swimming pools. Determine the equilibrium constant (K_a) of a 0.100 M sample of acid if it has a pH of 4.23.

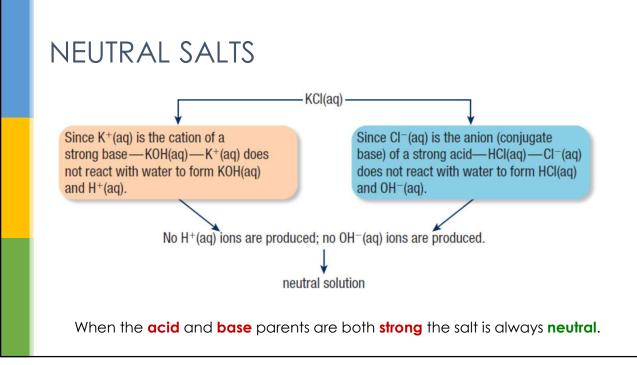


	reated by diss	jugate bases of weak a olving a soluble salt cor	
For example	<u>):</u>		
Weak Acid	Conj. Base (Weak Base)	Soluble Salt Containing Weak Base	TWO COMMON WEAK BASES TO RECOGNIZE:
HCN	CN-	NaCN	1. Ammonia (NH ₃)
HF	F-	NaF	2. Methyamine (CH_3NH_2)
CH ₃ COOH	CH ₃ COO-	NaCH ₃ COO	

		Ionization Constants for Some Acids and Their Conjugate Bases at 25°C					
		Acid Name	Formula	Ka	Formula	Kb	Base name
	K _b 's OF WEAK BASES	Perchloric acid	HCIO ₄	large	CIO4-	very small	
	Nh 3 OI MLAN DAJLJ	Sulfuric acid	H ₂ SO ₄	large	HSO4 [−]	very small	Hydrogen sulfate ion
	D	Hydrochloric acid	HCI	large	CIT	very small	Chloride ion
		Nitric acid	HNO3	large	NO3-	very small	Nitrate ion
	The K _b of a weak base is related to the K _a of the conjugate acid of	Hydronium ion	H ₃ O ⁺	1.0	H ₂ O	1.0x10 ⁻¹⁴	Water
	The N _h of a weak base	Sulfurous acid	H ₂ SO ₃	1.2x10 ⁻²	HSO3-	8.3x10 ⁻¹³	Hydrogen sulfite ion
		Hydrogen sulfate ion	HSO4-	1.2x10 ⁻²	SO4 ²⁻	8.3x10 ⁻¹³	Sulfate ion
	is related to the K _a of	Phosphoric acid	H ₃ PO ₄	7.5x10 ⁻³	H ₂ PO ₄ ⁻	1.3x10 ⁻¹²	Dihydrogen phosphate ion
		Hexaaquairon(III) ion	[Fe(H ₂ O) ₆] ³⁺	6.3x10 ⁻³	[Fe(H ₂ O) ₅ OH] ²⁺	1.6x10 ⁻¹²	Pentaaquahydroxoiron(III) ion
	the conjugate acid of	Hydrofluoric acid	HF	7.2x10 ⁻⁴	F ⁻	1.4x10 ⁻¹¹	Fluoride ion
_	ino conjogaro acia or	Nitrous acid	HNO ₂	4.5x10 ⁻⁴	NO ₂ ⁻	2.2x10 ⁻¹¹	Nitrite ion
	that base.	Formic acid	HCO ₂ H	1.8x10 ⁻⁴	HCO2-	5.6x10 ⁻¹¹	Formate ion
		Benzoic acid	C ₆ H ₅ CO ₂ H	6.3x10 ⁻⁵	C ₆ H ₅ CO ₂	1.6x10 ⁻¹⁰	Benzoate ion
		Acetic acid	CH ₃ CO ₂ H	1.8x10 ⁻⁵	CH ₃ CO ₂ -	5.6x10 ⁻¹⁰	Acetate ion
		Propanoic acid	CH ₃ CH ₂ CO ₂ H	1.3x10 ⁻⁶	CH ₃ CH ₂ CO ₂ ⁻	7.7x10 ⁻¹⁰	Propanoate ion
		Hexaaquaaluminium ion	[AI(H ₂ O) ₆] ³⁺	7.9x10 ^{−6}	[AI(H ₂ O) ₅ OH] ²⁺	1.3×10 ⁻⁹	Pentaaquahydroxoaluminum ion
		Carbonic acid	H ₂ CO ₃	4.2x10 ⁻⁷	HCO3-	2.4×10 ⁻⁸	Hydrogen carbonate ion
	$(Ka)(Kb) = K_w$	Hexaaquacopper(II) ion	[Cu(H ₂ O) ₆] ²⁺	1.6x10 ⁻⁷	[Cu(H ₂ O) ₅ OH]*	6.3x10 ⁻⁸	Pentaaquahydroxocopper(II) ion
	$(\mathbf{M})(\mathbf{M}) = \mathbf{M}_{W}$	Hydrogen sulfide	H ₂ S	1.0x10 ⁻⁷	HS-	1.0x10 ⁻⁷	Hydrogen sulfide ion
		Dihydrogen phosphate ion	H ₂ PO ₄ ⁻	6.2x10 ⁻⁸	HPO42-	1.6x10 ⁻⁷	Hydrogen phosphate ion
	$(Ka)(Kb) = 1.0 \times 10^{-14}$	Hydrogen sulfite ion	HSO3 ⁻	6.2x10 ⁻⁸	SO32-	1.6×10 ⁻⁷	Sulfite ion
		Hypochlorous acid	HCIO	3.5x10 ⁻⁸	CIO-	2.9x10 ⁻⁷	Hypochlorite ion
		Hexaaqualead(II) ion	[Pb(H ₂ O) ₆] ²⁺	1.5x10 ⁻⁸	[Pb(H₂O)₅OH] ⁺	6.7x10 ⁻⁷	Pentaaquahydroxolead(II) ion
		Hexaaquacobalt(II) ion	[Co(H ₂ O) ₆] ²⁺	1.3x10 ⁻⁹	[Co(H ₂ O) ₅ OH] ⁺	7.7×10 ⁻⁶	Pentaaquahydroxocobalt(II) ion
		Boric acid	B(OH) ₃ (H ₂ O)	7.3x10 ⁻¹⁰	B(OH) ₄ -	1.4×10 ⁻⁵	Tetrahydroxoborate ion
		Ammonium ion	NH4 ⁺			1.8x10 ⁻⁶	Ammonia
	$K_{\rm b} NH_3 =$	Hydrocyanic acid	HCN		CN ⁻	2.5×10 ⁻⁵	Cyanide ion
	ND I VI I3	Hexaaquairon(II) ion	[Fe(H ₂ O) ₆] ²⁺		[Fe(H ₂ O) ₅ OH]*	3.1×10 ^{−5}	Pentaaquahydroxoiron(II) ion
		Hydrogen carbonate ion	HCO3-		CO32-	2.1×10 ⁻⁴	Carbonate ion
		Hexaaquanickel(II) ion	[Ni(H ₂ O) ₆] ²⁺	2.5x10 ⁻¹¹	[Ni(H ₂ O) ₅ OH]*	4.0x10 ⁻⁴	Pentaaquahydroxonickel(II) ion
		Hydrogen phosphate ion	HPO4 ²⁻			2.8x10 ⁻²	Phosphate ion
		Water	H ₂ O	1.0x10 ⁻¹⁴		1.0	Hydroxide ion
		Hydrogen sulfide ion	HS ⁻	1.0x10 ⁻¹⁹	S ²⁻	1.0x10 ⁵	Sulfide ion
		Ethanol	C ₂ H ₅ OH	very small	C2H5O-	large	Ethoxide ion
		Ammonia	NH ₃	very small	NH2 ⁻	large	Amide ion
		Hydrogen	H ₂	very small	H-	large	Hydride ion



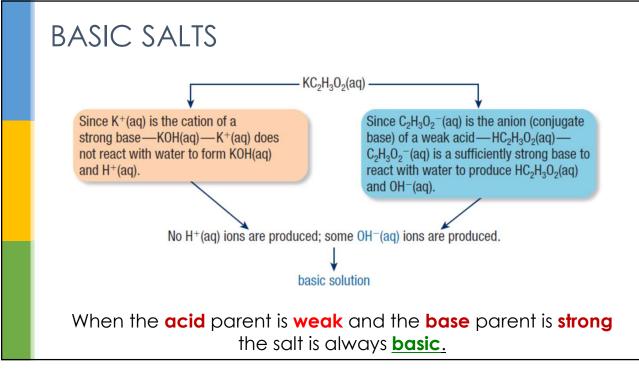

FOR EXAMPLE


Ammonia acts as a weak base in solution. It is commonly found in household cleaning solutions such as Windex and toilet bowl cleaners. What is the pH of a 0.050 M solution of ammonia?

WORKING BACKWARDS

Calculate the $K_{\rm b}$ of 0.20 M weak base that has a pH of 11.30. What is the identity of this substance?

3

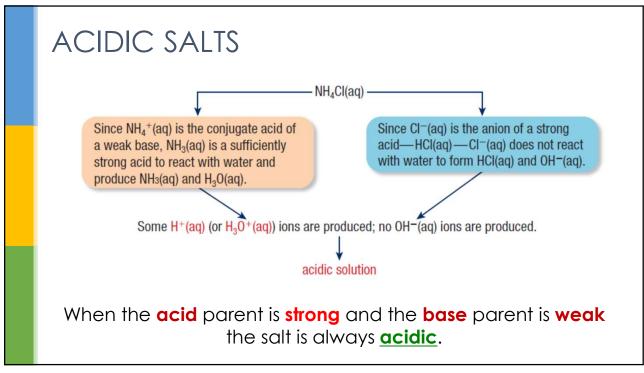

NEUTRAL SALTS

Type of Salt	Examples	Comment	pH of solution
Cation is from a strong base, anion from a strong acid	KCI, KNO ₃ NaCl NaNO ₃	Both ions are neutral	Neutral

These salts simply dissociate in water:

 $KCI(s) \rightarrow$

4


5

BASIC SALTS

Type of Salt	Examples	Comment	pH of solution
Cation is from a strong base, anion from a weak acid	NaC2H3O2 KCN, NaF	Cation is neutral, Anion is basic	Basic

The basic anion can accept a proton from water:

$$C_2H_3O_2^- + H_2O \leftrightarrows$$

7

ACIDIC SALTS

Type of Salt	Examples	Comment	pH of solution
Cation is the conjugate acid of a weak base, anion is from a strong acid	NH4CI, NH4NO3	Cation is acidic, Anion is neutral	Acidic

The acidic cation can act as a proton donor:

 $NH_4^+(aq) + H_2O \leftrightarrows$

EXAMPLE #1

A chemist dissolves a mass of sodium nitrite in distilled water. Will the resulting aqueous solution be acidic, basic, or neutral? Support your claim.

EXAMPLE #2

A chemist dissolves a mass of ammonium nitrate in distilled water. Will the resulting aqueous solution be acidic, basic, or neutral? Support your claim.

RELATIVE STRENGTHS OF BRØNSTED-LOWRY ACIDS AND BASES

in aqueous solution at room temperature.

Name of Acid	Acid		Base	K _a
Perchloric	HClO ₄	\rightarrow	$H^+ + ClO_4^-$	very large
Hydriodic	HI	\rightarrow	$H^+ + I^-$	very large
Hydrobromic	HBr	\rightarrow	$H^+ + Br^-$	very large
Hydrochloric	HC1	\rightarrow	$H^+ + Cl^-$	very large
Nitric	HNO ₃	\rightarrow	$H^{+} + NO_{3}^{-}$	very large
Sulphuric	H ₂ SO ₄	\rightarrow	$H^+ + HSO_4^-$	very large
Hydronium Ion	H ₃ O ⁺	$\stackrel{\rightarrow}{\leftarrow}$	$H^+ + H_2O$	1.0
Iodic	HIO ₃	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + IO_{3}^{-}$	1.7×10^{-1}
Oxalic	$H_2C_2O_4$	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + HC_2O_4^{-}$	5.9×10^{-2}
Sulphurous (SO ₂ + H ₂ O)	H ₂ SO ₃	$\stackrel{\rightarrow}{\leftarrow}$	H ⁺ + HSO ₃ ⁻	1.5×10^{-2}
Hydrogen sulphate ion	HSO ₄ -	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + SO_4^{2-}$	1.2×10^{-2}
Phosphoric		${\rightarrow}$	$H^{+} + H_2 PO_4^{-}$	7.5×10^{-3}
Hexaaquoiron ion, iron(III) ion	$Fe(H_2O)_6^{3+}$	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + Fe(H_2O)_5(OH)^{2+}$	6.0×10^{-3}
Citric	H ₃ C ₆ H ₅ O ₇	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + H_2C_6H_5O_7^{-}$	7.1×10^{-4}
Nitrous	HNO ₂	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + NO_{2}^{-}$	4.6×10^{-4}
Hydrofluoric		$\stackrel{\scriptstyle \rightarrow}{\leftarrow}$	$H^+ + F^-$	3.5×10^{-4}
Methanoic, formic	НСООН	$\stackrel{\longrightarrow}{\rightarrow}$	H ⁺ + HCOO ⁻	1.8×10^{-4}
Hexaaquochromium ion, chromium(III) ion	$Cr(H_2O)_6^{3+}$	$\stackrel{\rightarrow}{\rightarrow}$	$H^{+} + Cr(H_2O)_5(OH)^{2+}$	1.5×10^{-4}
Benzoic	C ₆ H ₅ COOH	$\stackrel{\rightarrow}{\leftarrow}$	$H^+ + C_6 H_5 COO^-$	6.5×10^{-5}
Hydrogen oxalate ion	HC ₂ O ₄ -	$\stackrel{\rightarrow}{\leftarrow}$	$H^+ + C_2 O_4^{2-}$	6.4×10^{-5}
Ethanoic, acetic	CH ₃ COOH	$\stackrel{\longrightarrow}{\leftarrow}$	$H^+ + CH_3COO^-$	1.8×10^{-5}
Dihydrogen citrate ion	H ₂ C ₆ H ₅ O ₇ ⁻	${\leftarrow}$	$H^{+} + HC_{6}H_{5}O_{7}^{2-}$	1.7×10^{-5}
Hexaaquoaluminum ion, aluminum ion	$Al(H_2O)_6^{3+}$	\rightleftharpoons	$H^{+} + Al(H_2O)_5(OH)^{2+}$	1.4×10^{-5}
Carbonic $(CO_2 + H_2O)$		\rightleftharpoons	$H^{+} + HCO_{3}^{-}$	4.3×10^{-7}
Monohydrogen citrate ion	HC ₆ H ₅ O ₇ ²⁻	$\stackrel{>}{\leftarrow}$	$H^+ + C_6 H_5 O_7^{3-}$	4.1×10^{-7}
Hydrogen sulphite ion	HSO ₃ ⁻	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + SO_{3}^{2-}$	1.0×10^{-7}
Hydrogen sulphide		$\stackrel{\rightarrow}{\leftarrow}$	H ⁺ + HS ⁻	9.1×10^{-8}
Dihydrogen phosphate ion		$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + HPO_{4}^{2-}$	6.2×10^{-8}
Boric	H ₃ BO ₃	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + H_2 BO_3^{-}$	7.3×10^{-10}
Ammonium ion	NH ₄ ⁺	$\stackrel{\rightarrow}{\leftarrow}$	H ⁺ + NH ₃	5.6×10^{-10}
Hydrocyanic	HCN	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + CN^{-}$	4.9×10^{-10}
Phenol	C ₆ H ₅ OH	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + C_{6}H_{5}O^{-}$	1.3×10^{-10}
Hydrogen carbonate ion	HCO ₃ -	$\stackrel{\rightarrow}{\leftarrow}$	$H^{+} + CO_3^{2-}$	5.6×10^{-11}
Hydrogen peroxide				
Monohydrogen phosphate ion				
Water				
Hydroxide ion				
Ammonia				

Indicator	pH Range in Which Colour Change Occurs	Colour Change as pH Increases
Methyl violet	0.0 - 1.6	yellow to blue
Thymol blue	1.2 - 2.8	red to yellow
Orange IV	1.4 - 2.8	red to yellow
Methyl orange	3.2 - 4.4	red to yellow
Bromcresol green	3.8 - 5.4	yellow to blue
Methyl red	4.8 - 6.0	red to yellow
Chlorophenol red	5.2 - 6.8	yellow to red
Bromthymol blue	6.0 - 7.6	yellow to blue
Phenol red	6.6 - 8.0	yellow to red
Neutral red	6.8 - 8.0	red to amber
Thymol blue	8.0 - 9.6	yellow to blue
Phenolphthalein	8.2 - 10.0	colourless to pink
Thymolphthalein	9.4 - 10.6	colourless to blue
Alizarin yellow	10.1 - 12.0	yellow to red
Indigo carmine	11.4 - 13.0	blue to yellow

ACID-BASE INDICATORS

Name	Formula	K _{sp}
Barium carbonate	BaCO ₃	2.6×10^{-9}
Barium chromate	BaCrO ₄	1.2×10^{-10}
Barium sulphate	BaSO ₄	1.1×10^{-10}
Calcium carbonate	CaCO ₃	5.0×10^{-9}
Calcium oxalate	CaC ₂ O ₄	2.3×10^{-9}
Calcium sulphate	CaSO ₄	7.1×10^{-5}
Copper(I) iodide	CuI	1.3×10^{-12}
Copper(II) iodate	$Cu(IO_3)_2$	6.9×10^{-8}
Copper(II) sulphide	CuS	6.0×10^{-37}
Iron(II) hydroxide	Fe(OH) ₂	4.9×10^{-17}
Iron(II) sulphide	FeS	6.0×10^{-19}
Iron(III) hydroxide	Fe(OH) ₃	2.6×10^{-39}
Lead(II) bromide	PbBr ₂	6.6×10^{-6}
Lead(II) chloride	PbCl ₂	1.2×10^{-5}
Lead(II) iodate	$Pb(IO_3)_2$	3.7×10^{-13}
Lead(II) iodide	PbI ₂	8.5×10^{-9}
Lead(II) sulphate	PbSO ₄	1.8×10^{-8}
Magnesium carbonate	MgCO ₃	6.8×10^{-6}
Magnesium hydroxide	$Mg(OH)_2$	5.6×10^{-12}
Silver bromate	AgBrO ₃	5.3×10^{-5}
Silver bromide	AgBr	5.4×10^{-13}
Silver carbonate	Ag ₂ CO ₃	8.5×10^{-12}
Silver chloride	AgCl	1.8×10^{-10}
Silver chromate	Ag ₂ CrO ₄	1.1×10^{-12}
Silver iodate	AgIO ₃	3.2×10^{-8}
Silver iodide	AgI	8.5×10^{-17}
Strontium carbonate	SrCO ₃	5.6×10^{-10}
Strontium fluoride	SrF ₂	4.3×10^{-9}
Strontium sulphate	$SrSO_4$	3.4×10^{-7}
Zinc sulphide	ZnS	2.0×10^{-25}

SOLUBILITY PRODUCT CONSTANTS AT 25°C

SOLUBILITY OF COMMON COMPOUNDS IN WATER

	Negative Ions Anions)	Positive Ions (Cations)	Solubilit Compou	
	All	Alkali ions: Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺	Soluble	
	All	Hydrogen ion: H ⁺	Soluble	
	All	Ammonium ion: NH ₄ ⁺	Soluble	
	Nitrate, NO ₃ ⁻	All	Soluble	
or		All others	Soluble	
or	Bromide, Br	Ag ⁺ , Pb ²⁺ , Cu ⁺		Low Solubility
	Subsets SO 2-	All others	Soluble	
	Suprate, SO_4	Ag ⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺ , Pb ²⁺		Low Solubility
	Sulphide, S ²⁻	Alkali ions, H ⁺ , NH ₄ ⁺ , Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺ , Ba ²⁺		
	Sulphide, S	All others		Low Solubility
		Alkali ions, H ⁺ , NH ₄ ⁺ , Sr ²⁺	Soluble	
	Hydroxide, OH ⁻	All others		Low Solubility
or	Phosphate, PO_4^{3-}	Alkali ions, H ⁺ , NH ₄ ⁺	Soluble	
or	Carbonate, CO_3^{2-} Sulphite, SO_3^{2-}	All others		Low Solubility

The term soluble here means > 0.1 mol/L at 25°C.

	VIIIA	5	Н	helium		10	Ne	neon		18	Ar	argon	36	Kr	krypton	54	Xe	xenon	86	Rn	radon				71	Lu Iutetium	103	Gd ³⁺	lawrencium
						5	<u>ن</u> د	fluoride	;	/1	<u>ר</u>	chloride	35	Br'	bromide	53	<u>-</u>	iodide	85	At					70 3+	Yb ^o <u>ytterbium (II)</u> Yb ²⁺	102		ĕ
						×	0 [;]	oxide		01	S ²	sulfide	34	Se ²⁻	selenide	52	Te ²⁻		84 _ ²⁺	polonium (II)	PO ⁴⁷ polonium (IV)				69	Tm ³⁺	101	Md ²⁺ mendelevium(II)	mendelevium (III)
					A	-	z ³	nitride	Ļ	<u>c</u>	Å	phosphide	33	As ³⁻	arsenide	51	Sb ³⁺ antimony (III)	antimony (V)	83 5.34	bismuth (III)	bismuth (V)				68	Er ³⁺ erbium	100	Fm ³⁺	fermium
					AN	20	ပ	carbon		14	Si	silicon	32	Ge ⁴⁺	germanium	50	Sn ⁴⁺ ^{tin (IV)} 2+	UN	82 2+		Pb ⁴⁷ lead (IV)				67	Ho ³⁺	66	Es ³⁺	einsteinium
					AII -	2	ß	boron	4	13	Al ³⁺	aluminum	31	Ga ³⁺	gallium	49	In ³⁺	indium	81	thallium (I)	thallium (III)				99	Dy ³⁺	86	S	californium
		SiO ₃ ²⁻	SO4 ²⁻	SO3 ²⁻	'SH	HSO₄ ⁻	HSO ³	SCN	$S_2O_3^{2-}$			IIB	30		zinc	48	Cd ²⁺	cadmium	80 : 2+	mercury (II)	Hg ^T mercury (I)				65	Tb ³⁺	97		berkelium (IV)
	dihydrogen phosphate				ulphide	ulphate	ulphite		۵.			B	29 C ²⁺	copper (II)	copper (I)	47	Ag⁺		79		Au ^T				64	Gd ³⁺ gadolinium	96	3) curium
	dihydrogen	silicate	sulphate	sulphite	hydrogen sulphide	hydrogen sulphate	hydrogen sulphite	thiocyanate	thiosulphate			Γ	28 Mi ²⁺	nickel (II)	NI nickel (III)	46	Pd ²⁺		78	platinum (IV)	Pt ²⁷ platinum (II)				63 34		europium(II)	Am ³⁺ americium (III)	
ons							coo ²⁻ 1	D₄ ⁻ t	-	D_4^{2-}		VIIB	27	cobalt (II)	cobalt (III)	45	- Rh ³⁺		77	اr ⁴⁺	iridium				62 3+	ю,	samum(II) 94		_
lyatomic I	$Cr_2O_7^{2-}$	CN	-HO	10 ₃ -	NO		00		PO4 ³⁻	sphate HP(L	26 5.3+	÷.	() iron (II)	4	ruthenium (III)	ruthenium (IV)	76	Os ⁴⁺	osmium				61	Pm ³⁺	93	<u> </u>	_
Table of Polyatomic lons	dichromate	cyanide	hydroxide	ate	ate	ite	oxalate	permanganate	phosphate	hydrogen phosphate HPO4 ²⁻		VIIB	25 Mm ²⁺	٤¦	manganese (IV)	_		-	75	Re ⁷⁺	rhenium				60	Nd ³⁺	2	0 uranium (VI)	
-		суа			nitrate	nitrite	оха	per	bho	hyd		VIB	24 C_3 ⁺	5					74	W ⁶⁺	tungsten				59	Pr ³⁺	91	Pa ⁵⁺ protactinium (V)	Protactinium(IV)
	CH3COO	NH₄ ⁺	C ₆ H ₅ COO ⁻	BO33	co ₃ 2-	Ite HCO ₃	CIO3	CIO	CrO4 ²⁻			VB	23 V ⁵⁺	au	var	41		niobium (III)	73	Ta ⁵⁺	tantalum				58	cerium	06	Th ⁴⁺	thorium
		nium	ite		ate	hydrogen carbonate HCO ₃	Ð	Ilorite	ate			IVB	22 T ⁴⁺	titanium (IV)	titanium (III)	40	Zr ⁴⁺	zirconium	72	Hf⁴	hafnium			_		Ð			
	acetate	ammonium	benzoate	borate	carbonate	hydrog	chlorate	hypochlorite	- chromate			IIIB	21	Sc ³⁺	scandium	39	Y ³⁺	yttrium	57	La ³⁺	lanthanum	89	Ac ³⁺		ion charge		_		
					AII ,	4	Be ²⁺	Beryllium		71	Mg ²⁺	magnesium	20	Ca ²⁺	calcium	38	Sr ²⁺	strontium	56	Ba ²⁺	barium	88	Ra ²⁺		26 - 3+	re iron(Ⅲ) ← Fe ²⁺	iron (II)		
	A	-	Ę	hydrogen		<u></u>	₽	lithium			Na⁺	sodium	19	₹	potassium	37	Rb⁺	nbidium	55	Cs⁺	cesium	87	Fr+ francium		atomic	symbol			

Periodic Chart of lons

	•			1	•					;	•					ļ	
-	N	e	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18
•																	
Т																	2
Hydrogen																	He
1.0							Atom	Atomic Number	_								4.0
ď	4					4	Swinhol	in the second se				Ľ	y	7	α	σ	10
	Be						Name	5				2) C	Z	C	ьц	NP
Lithium	Benyllium					- BC	Atom	Atomic Mass				Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
6.9	9.0					07		CONTACT A				10.8	12.0	14.0	16.0	19.0	20.2
11	12							_				13	14	15	16	17	18
Na	Mg							_				A	Si	٩.	S	ប	Ar
Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulphur	Chlorine	Argon
23.0	24.3							_				27.0	28.1	31.0	32.1	35.5	39.9
19	20	21	22	23	24	25	26	27	28	29	30	<mark>31</mark>	32	33	34	35	36
¥	Ca	Sc	Ħ	>	ບັ	Mn	Fe	°	ïZ	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	<mark>51</mark>	52	53	54
Rb	s	٢	Zr	qN	Mo	Tc	Bu	Rh	Pd	Ag	Cd	<mark>L</mark>	Sn	Sb	Te	_	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Molybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	lodine	Xenon
85.5	87.6	88.9	91.2	92.9	95.9	(86)	101.1	102.9	106.4	107.9	112.4	114.8	118.7	121.8	127.6	126.9	131.3
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
cs	Ba	La	Ηf	Ta	≥	Re	0s	L	F	Au	Hg	F	Pb	<u>Bi</u>	Ро	At	Rn
Cesium	Barium	Lanthanum	Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
132.9	137.3	138.9	178.5	180.9	183.8	186.2	190.2	192.2	195.1	197.0	200.6	204.4	207.2	209.0	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109									
ŗ	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt									
Francium (223)	Radium (226)	Actinium (227)	Rutherfordium (261)	(262)	Seaborgium (263)	Bohrium (262)	Hassium (265)	Meitnerium (266)									
									_								
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				S	Pr	PN	Pm	Sm	Eu	Gd	Tb	D	Ч	ш	Tm	γb	Lu
Based on mass of C12 at 12.00.	nass of C	at 12.00.	_	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
				140.1	140.9	144.2	(145)	150.4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
Values in p	Values in parentheses	S	/	06	91	92	<mark>93</mark>	94	95	96	97	<mark>86</mark>	66	100	101	102	103
are the masses of the most	usses of the	e most	/	Ч	Ра	D	Np	Pu	Am	Cm	BĶ	ç	Es	Бщ	рМ	No	ב
stable or best known isotopes for	nest known	isotopes	for	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	(OCO)
elements which do not occur halurally.	vnicn ao n	or occur n	aturauy.	0.707	0.107	0.002	(107)	(++-7)	(0+7)	(1+7)	(1+7)	(102)	(202)	(107)	(007)	(202)	(202)

PERIODIC TABLE OF THE ELEMENTS