CHEMISTRY 40S The Alchemist's Notebook

UNIT 5 – ATOMIC STRUCTURE

"Ohhhhhhh . . . Look at that, Schuster . . . Dogs are so cute when they try to comprehend quantum mechanics."

NAME:

LET'S GET STARTED!

By the end of this unit, you should be able to:

- Describe qualitatively and quantitatively, the electromagnetic spectrum of radiation in terms of frequency, wavelength, and energy.
- ✓ Recognize, through direct observation, that elements have unique line spectra.
- \checkmark Outline the historical development of the quantum mechanical model of the atom.
- \checkmark Write electron configurations for elements of the periodic table.
- Relate the electron configuration of an element to its valence electron(s) and its position on the periodic table.
- Identify and account for periodic trends among the properties of elements and relate the properties to electron configuration

This unit will take approximately 10 lessons to complete and will comprise 10% of your mark in this class.

THE WAVE NATURE OF LIGHT

Light travels through space as a <u>wave.</u>

It travels at a constant speed equal to 3.00 x 10⁸ m/s or 300 million m/s.

Slide 7

	BUT ONLY RELATIVELY.
	EARTH, MOON AND MARS — All distances to scale; bodies x20 larger —
	EARTH Speed of light in real-time Earth-Mars oneway = 3min 2sec
	Closest approach 54.6 Million km
	James O'Donoghue / NASA imagery — T: @physicsJ IG: jameslikesspace
9	

INFRARED SPECTROSCOPY

SA and ESA

NASA's Hubble Space Telescope has cameras that can capture different wavelengths of light, resulting in images that show different perspectives of the same object.

M16 ■ Eagle Nebula Hubble Space Telescope ■ WFC3/UVIS/IR

STScI-PRC15-01

13

THERMAL IMAGING

Thermal (infrared) imaging is very useful. It can be used to detect abnormal heat signatures in electrical circuits as well as in animals.

CONVERTING BETWEEN WAVELENGTH & FREQUENCY $\begin{aligned}
\mathcal{L} = \lambda \mathcal{L} \\
\lambda &= \text{wavelength in meters} \\
\Psi &= \text{frequency} \left(\frac{1}{s} \text{ becomes s}^{-1} \text{ or Hz}\right) \\
C &= \text{speed of light} \left(3.00 \times 10^8 \text{ m/s}\right)
\end{aligned}$

Multiplication Factor Prefix Symbol 1,000,000,000 = 10 9 giga G 1,000,000 = 10 6 mega M 1,000 = 10 3 kilo k 100 = 10 2 hecto h 0.01 = 10 $^{-2}$ centi c			
1,000,000,000 = 10 9 giga G 1,000,000 = 10 6 mega M 1,000 = 10 3 kilo k 100 = 10 2 hecto h 1 = 1 0.01 = 10 -2 centi c	Multiplication Factor	Prefix	Symbol
1,000,000 = 10 ⁶ 1,000 = 10 ³ 100 = 10 ² 1 = 1 0.01 = 10 ⁻² centi	1,000,000,000 = 10 9	giga	G
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1,000,000 = 10 ⁶	mega	M
$100 = 10^{2}$ hecto h 1 = 1 centi c	$1,000 = 10^{3}$	kilo	k
1 = 1 0 01 = 10 ⁻² centi c	$100 = 10^2$	hecto	h
0.01 = 10 ⁻² centi c	1 = 1		
	$0.01 = 10^{-2}$	centi	C
0.001 = 10 ⁻³ milli m	$0.001 = 10^{-3}$	milli	m
$0.000001 = 10^{-6}$ micro μ	$0.000001 = 10^{-6}$	micro	μ
0.00000001 = 10 ⁻⁹ nano n	$0.0000001 = 10^{-9}$	nano	n

CONTINUOUS SPECTRUM

Rainbows are formed when raindrops act as prisms, separating the sunlight into all its component wavelengths to produce a continuous spectrum of photons.

ATOMIC LINE SPECTRA

When this light is passed though a prism, a <u>line</u> <u>spectrum</u> is produced rather than a continuous spectrum.

For example, when hydrogen atoms are excited and the light produced is passed through a prism, only 4 wavelengths of light are produced.

EMMISION LINE SPECTRA

When light from space is collected and passed though a prism, much of the time the line spectra match the line spectrum of hydrogen.

This is how we know 99.9% of our known universe is comprised of hydrogen.

WHY DOES THIS HAPPEN?

Remember that electrons are found in energy levels around the nucleus of atoms.

The farther away from the nucleus the electron (the higher the energy level), the more energy the electron must have to stay there.

Slide 10

Slide 5

s orbitals There is only 1 arrangement of an s orbital. One s orbital is found in <u>every</u> energy level. x

	VERTICAL ORBITAL DIAGRAMS
	Determine the electron configuration for <u>carbon</u> .
	4s 3d 3d 3d 3s 3s 3s 3s 2p 3s 4s
19	

Image: Description of the selectron configuration for a chloride ion in sublevel notation. 4s 3b 3c 2p 1s

ION SUBLEVEL NOTATION
Write the electron configuration for a manganese ion in sublevel notation.
4s 3d 3d 3d 3d 3p
15

SUMMARY

Energy Level	Sub-Energy Levels	Orbitals	Electrons in Each Orbital	Number of Electrons in Each Sub-Energy Level	Total Electrons in Energy Level
1	1s	1 s,	2	2	2
2	2s, 2p	1 s, 3 p's	2	2, 6	8
3	3s, 3p, 3d	1 s, 3 p's, 5 d's	2	2, 6, 10	18
4	4s, 4p, 4d, 4f	1 s, 3 p's, 5 d's, 7 f's	2	2, 6, 10, 14	32

Slide 25

SUBLEVEL NOTATION - NOBLE GAS CONGIGURATION Platinum (Pt) $\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & &$
 Implementation
 Implementation

 1
 H

 1
 H

 1
 H

 3
 H

 3
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1
 H

 1< 1s 1s Begin here -> 2s2p 3s Зp 4s 3d 4p 5s 4d5p 57-70 * 6s 5d 6p 104 Rf 7s 6d 7p 4f * * Actinide series 5f

PERIODICITY OF ELECTRON CONFIGURATIONS 1A 8A 1 18 1 \mathbf{H}^{1} $1s^{1}$ 2 $\frac{1}{1s^2}$ 2A 2 7A 17 4A5A 6A 3A 13 14 15 16 Core 5 7 8 10 3 4 6 $\frac{1}{2s^2}$ C $2s^22p^2$ \mathbf{N} $2s^22p^3$ O $2s^22p^4$ \mathbf{F} $2s^22p^5$ Li $2s^1$ B Ne $2s^22p^6$ $2s^22p^1$ [He] $13 \\ Al \\ 3s^2 3p^1$ 8B $15 \\ P \\ 3s^2 3p^3$ 11 12 16 17 18 14 Cl $3s^23p^5$ $\frac{\mathbf{S}}{3s^2 3p^4}$ Mg Si Ar $3s^23p^6$ Na 3B 4B5B 6B 7B 9 10 1B2B 8 [Ne] $3s^1$ $3s^23p^2$ $3s^2$ 12 3 4 6 7 11 5 19 **K** 4s¹ 21 Sc 20 Ca 22 Ti 23 V 24 Cr 27 **Co** 25 30 31 32 33 34 35 36 28 29 26 Ge 4s²3d¹ Kr s²3d¹ Mn Ni Zn Ga 4s²3d¹ Br Fe Cu Se As $4s^23d^1$ $4s^23d^3$ $4s^2 3d^7$ $4s^23d^8$ $4s^23d^{10}$ [Ar] $4s^23d^2$ $4s^{1}3d^{5}$ $4s^13d^2$ $4s^2$ $4s^23d^5$ $4s^23d^6$ $4p^6$ $4p^1$ $4p^2$ $4p^2$ $4p^4$ 4p 39 Y 51 Sb 37 38 40 41 42 43 44 45 47 48 49 52 53 54 46 50 Rb $\frac{\mathbf{Sr}}{5s^2}$ Zr Nb Mo Tc Ru Rh Pd Cd $Ag_{5s^14d^1}$ In Sn Te Xe s^24d^1 [Kr] $5s^24d^1$ 5s1 $5s^24d^2$ $5s^24d^3$ $5s^24d^4$ 5s14d $4d^{10}$ $5s^14d$ $5s^{1}4d^{7}$

WATCH THIS... н Potassium is (more/less) reactive than sodium? Why? Hydrogen 1008 Be Li Beryllium Lithium 6.94 9,0121831 12 Calcium is (more/less) reactive than potassium? Why? Mg Na Magnesiu 24.305 Sodium 22.98976926 20 κ Са Potassium 39.0983 Calcium 00.078

	VIIIA	7	μ	helium		01	Ne	neon		18	Ar	argon	36	Kr	krypton	54	Xe	xenon	86	Rn	radon					5	Ľ	Iutetium	103	Gd ³⁺	lawrencium
						ה	i.	fluoride		17	<u>נ</u>	chloride	35	Br	bromide	53	<u>-</u>	iodide	85	At	astatide					را ۲h ³⁺	ytterbium (III)	ytterbium (II)	102	nobelium (II) 3+	(III) nobelium (III)
						×	ō	oxide		16	S ²⁻	sulfide	34	Se ²⁻	selenide	52	Te ²⁻	telluride	84 _{D-2} +	polonium (II)	polonium (IV)					60	Tm ³⁺	minu	101	mendelevium(II	ma ⁻ mendelevium (III
					A		ź	nitride	ļ	15	Å	phosphide	33	As ³⁻	arsenide	51	antimony (III)	antimony (V)	83 D: ³⁺	bismuth (III)	bismuth (V)					80	ь Ш	eroium	100	Fm ³⁺	femium
					A	٥	ပ	carbon		14	Si	silicon	32	Ge ⁴⁺	gemanium	50	Sn ⁴ tin (IV)	tin (II)	82 DL ²⁺	lead (II)	Pb lead (IV)					/0	но [±]		66	Es ³⁺	einsteinium
					ĕ	<u>ი</u>	۵	boron	4	13	Al ³⁺	aluminum	31	Ga ³⁺	gallium	49	In ³⁺	indium	81 <u>†</u>		thallium (III)					00	D D	dysprosium	<u> 8</u> 6	Ct ³⁺) californium
	H2PO4	SiO ₃ ²⁻	SO_4^{2-}	SO_{3}^{2-}	ΗS	HSO4 ⁻	HS0 ³	SCN	$S_2O_3^{2-}$			IIB	30	Zn ²⁺	zinc	48	Cd ²⁺	cadmium	80 11-2+		mercury (1)				L	ço	Tb ³⁺	terbium	97 Di ³⁴	berkelium (III	berkelium (IV
	i phosphate				ulphide	ulphate	ulphite	0	е			B	29 C ²⁺	copper (II)	copper (I)	47	Ag⁺) silver	79 A ³⁺	(III) Bold (III)	Au gold (I)					64	 Ed ³⁺	gadolinium	96	Cm³⁺	() curium
	dihydroger	silicate	sulphate	sulphite	hydrogen s	hydrogen s	hydrogen s	thiocyanate	thiosulphat			Γ	28 Ni ²⁺	nickel (II)	nickel (III)	46 31	Paladium (II)	paladium (IV	78 5.4+	<u>platinum_(IV</u>	platinum (II)					67 11 13 13	I) europium (II	europium(II)	95 • 3+	() americium (II	I) americium (I)
ons	07 ²⁻				'.e	5'	ccoo ²⁻	04	4 ³	04 ²⁻			27 Co ²⁺	cobalt (II)	cobalt (III)	45		() rhodium	77	اr ⁴⁺	iridium					07 Sm ³⁺	samarium (III	samium(II)	94 7	plutonium (IV	Plutonium (VI
olyatomic I	Cr2	CN	НО	<u>0</u>	NO	Q	00	Mn	Q	sphate HP		L	26 Er ³⁺		V) iron (II)	44 31	ruthenium (III	nuthenium (IV	76	Os ⁴⁺	osmium					10	Pm ³⁺	prometnium	93		neptunium
Table of Po	hromate	anide	droxide	ate	ate	ite	alate	manganate	osphate	drogen pho		VIIB	25 Mm ²⁺	manganese (manganese (l	43	Tc ⁷⁺	technetium	75	Re ⁷⁺	rhenium					00	Nd ³⁺	n neodymium	92 6+	V) uranium (VI)	 U¹: U) uranium (IV)
-	0 ⁻ dicl	cya	DO ⁻ hyd	iod	nitr	nitr	0X8	ber	bhq	hyo		VIB	24 C_3 ⁺	chromium (III) chromium (II)	42	Mo ⁶⁺	molybdenum	74	W ⁶⁺	tungsten					60	Pr ³	praseodymiun	91 5-5-	protactinium (/	Pa protactinium(N
	CH ₃ CO	NH_4^+	C ₆ H ₅ CC	BO33	CO_{3}^{2}	ate HCO ₃ ⁻	CIO3	CIO	CrO4 ²⁻			VB	23 V ⁵⁺	vanadium (V)	vanadium (IV	41 5-		niobium (III)	73	Ta ⁵⁺	tantalum					χç	Ce	Cerum	06	Th ⁴⁺	thorium
	¢)	nium	ate		nate	jen carbona	e	nlorite	ate			IVB	22 T: ⁴⁺	titanium (IV)	titanium (III)	40	Zr ⁴⁺	zirconium	72	Hf⁴	hafnium]) e				
	acetate	ammo	benzo	borate	ے احمد ا	hydrog	chlorat	hypoch	chrom			IIIB	21	Sc ³⁺	scandium	39	⊀³⁺	yttrium	57	La ³⁺	lanthanum	89	Ac ³⁺	actinium			- stock nar (IUPAC)				
	1			:	AI ,	4	Be ²⁺	Beryllium		12	Mg ²⁺	magnesium	20	Ca ²⁺	calcium	38	Sr ²⁺	strontium	56	Ba²⁺	barium	88	Ra²⁺	radium	KEY	, ∠o Fe ³⁺ ≪	iron (III) ←	Fe ¹ ion (II)			
	IA	-	Ţ	hydrogen		v	בי	lithium		11	Na⁺	sodium	19	¥	potassium	37	Rb⁺	nubidium	55	Cs⁺	cesium	87	ţ. L	francium	oimote	number		symbol			

Periodic Chart of lons

18	2 He Heium Heium Heium Angon 39.9	36 Krypton 83.8	54 Xenon Xenon 131.3 86 Radon (222)	71 Lutetium 175.0 103 Lawrencium (262)
17	9 Huorine 19.0 35.5	35 Bromine 79.9	53 lodine 85 Astatine (210)	70 Yb Ytterbium 173.0 102 Nobelium (259)
16	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	34 Selenium 79.0	52 Te Tellurium 127.6 Po Polonium (209)	69 Thulium 168.9 101 Mendelevium (258)
15	Nitrogen 14.0 15 Phosphorus 31.0	33 As Arsenic 74.9	51 Sb Antimony 121.8 83 83 Bismuth 209.0	68 Erbium 167.3 100 Femium (257)
14	6 Carbon 12:0 28:1 28:1	32 Germanium 72.6	50 Sn 118.7 82 Pb Lead 207.2	67 Holmium 164.9 99 Es Einsteinium (252)
13	5 Boron 10.8 13 Aluminum 27.0	31 Ga Gallium 69.7	49 Indium 114.8 81 T A I A 204.4	66 Dy Dysprosium 162.5 98 Cf Cafitomium (251)
12		30 Zn 5.4	48 Cadmium 112.4 80 Mercuny 200.6	65 Tb Terbium 158.9 97 8 R B R B B C 247)
11		29 Cu Copper 63.5	47 Ag silver 107.9 79 Gold 197.0	64 Gd Gadolinium 157.3 96 Cm Curium (247)
10		28 Nickel 58.7	46 Pdaladium 106.4 78 Ptatinum 195.1	63 Europium 152.0 95 Americium (243)
6	ic Number ol ic Mass	27 Co Cobatt 58.9	45 Rh 102.9 77 77 Ir 102.2 109 Mt Metherium (266)	62 Samarium 150.4 94 Plutonium (244)
8	Atom Symbol Atom Atom	26 Fe	44 Ruthenium 101.1 76 OS 0smium 190.2 108 Hassium (265)	61 Promethium (145) 93 93 Neptunium (237)
7	28:14 28:14	25 Mn Manganese 54.9	43 Tc Technetium (98) 75 Rentum 186.2 107 Bh Bh Bhrium (262)	60 Neodymium 144.2 92 Uranium 238.0
9		24 Cr 52.0	42 Mo 95.9 74 V Tungsten 183.8 106 Sg Seaborgium (263)	59 Pr Praseodymium 140.9 91 Pa Protactinium 231.0
5		23 Vanadium 50.9	41 Nbobium 92.9 73 Tar 180.9 105 Db Dubnium (262)	58 Certum Certum 140.1 90 90 232.0
4		22 Titanium 47.9	40 Zr 21 91.2 91.2 72 Hf Hafrium 178.5 104 Rf Rf Rutherfordium (261)	for aturally.
3		21 Scandium 45.0	39 Y tritium 88.9 57 57 La Lanthanum 138.9 89 89 89 AC Actinium (227)	² at 12.00. s s most isotopes j ot occur n
2	4 Beylium 9.0 12 Magnesium 24.3	20 Calcium 40.1	38 Strontium 87.6 56 Ba 137.3 88 88 88 Radium (226)	nass of C narenthese sses of thu vhich do n
-	Hydrogen Hydrogen 1.0 1.0 Sodium Sodium 23.0 23.0	19 K Potassium 39.1	37 Rubidium 85.5 55 55 55 Cs cesium 132.9 87 87 Fr Francium (223)	Based on 1 Values in 1 are the ma stable or b elements w

PERIODIC TABLE OF THE ELEMENTS