CHEMISTRY 40S

The Alchemist's Notebook

UNIT 5 - ATOMIC STRUCTURE

"Ohhhhhhh . . . Look at that, Schuster .
Dags are so cute when they try to comprehend quantum mechanics."

NAME:

LET'S GET STARTED!

By the end of this unit, you should be able to:
\checkmark Describe qualitatively and quantitatively, the electromagnetic spectrum of radiation in terms of frequency, wavelength, and energy.
\checkmark Recognize, through direct observation, that elements have unique line spectra.
\checkmark Outline the historical development of the quantum mechanical model of the atom.
\checkmark Write electron configurations for elements of the periodic table.
\checkmark Relate the electron configuration of an element to its valence electron(s) and its position on the periodic table.
\checkmark Identify and account for periodic trends among the properties of elements and relate the properties to electron configuration

This unit will take approximately 10 lessons to complete and will comprise 10% of your mark in this class.

1. THE NATURE OF LIGHT

UNIT 5 - ATOMIC STRUCTURE
CH4OS MR. WIEBE

1

INTRODUCTION

- Atomic structure explains chemical properties and patterns of chemical reactivity.
- Chemical reactions involve electrons. Knowing where the electrons are and how many there are helps explain many chemical phenomena.
- We use different forms of light to explore atomic structure (spectroscopy). Because of this, we start with a discussion of the nature of light.

THE NATURE OF LIGHT - PARTICLES OR WAVES??

Isaac Newton: Light must be made of particles because it...

- travels in a vacuum
- reflects off objects
- exerts force (on the tails of comets)

Christiaan Huygens: Light must consist of waves because it...

- reflects like waves
- refracts and diffracts
- exhibits interference

3

GENERAL CHARACTERISTICS OF WAVES

Amplitude: maximum displacement of a point on a wave away from its undisturbed position
Wavelength: distance from a point on one wave to the equivalent point on the adjacent wave.

GENERAL CHARACTERISTICS OF WAVES

Frequency: the number of times a crest passes a fixed point per unit of time.

$$
v=(\lambda)(f)
$$

3 meters per wave 2 waves per second

WAVELENGTH AND FREQUENCY

Higher Frequency Smaller Wavelength

Wavelength and Frequency are Inversely Proportional

Less Frequency
Bigger Wavelength

THE WAVE NATURE OF LIGHT

Light travels through space as a wave.

It travels at a constant speed equal to 3.00 x $10^{8} \mathrm{~m} / \mathrm{s}$ or 300 million m / s.

THE SPEED OF LIGHT IS FAST...

...BUT ONLY RELATIVELY.

9

BY THE END OF THE 1800's...

Light is an electromagnetic wave composed of continuous wavelengths that form a spectrum. Light and matter are two distinctly different entities.

JAMES MAXWELL

ELECTROMAGNETIC RADIATION (EMR)

Light can be broken down into 7 different types. These types are categorized based on wavelength and frequency.

Raging Martians Invaded ROY G. BIV Using X-Ray $\underline{\underline{\text { G }}} \underline{\underline{\text { R }}}$
11

SUMMARY

All types of light travel at the same speed.

Different types of light have different wavelengths and frequencies that are inversely proportional.

INFRARED SPECTROSCOPY

NASA's Hubble Space Telescope has cameras that can capture different wavelengths of light, resulting in images that show different perspectives of the same object.

THERMAL IMAGING

Thermal (infrared) imaging is very useful. It can be used to detect abnormal heat signatures in electrical circuits as well as in animals.

PARTICLE THEORY OF LIGHT

- In the early 1900's, new evidence was discovered by Max Planck, Albert Einstein, and others that resurrected the particle theory of light.
- Light is now thought to be composed of particles (quanta) each carrying a fixed amount of energy. These particles are called photons.
- The amount of energy per photon is directly
 proportional to the frequency of the light:

$$
\mathrm{E}=\mathrm{h} v \quad \text { or } \quad \mathrm{E}=\frac{\mathrm{hc}}{\lambda} \quad, \mathrm{~h}=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

15

PHOTONS = WAVICLES?

Particle $+\quad$ Wave $=$

PHOTONS!

IN OTHER WORDS...

LARGE Wavelength $=$ small Frequency $=$ small ENERGY PHOTON

small Wavelength $=\underline{\text { LARGE }}$ Frequency $=\underline{\text { LARGE ENERGY PHOTON }}$

17

CONVERTING BETWEEN WAVELENGTH \& FREQUENCY

$$
c=\lambda v
$$

$\lambda=$ wavelength in $\underline{\text { meters }}$
$v=$ frequency ($\frac{1}{s}$ becomes s^{-1} or Hz)
$c=$ speed of light $\left(\mathbf{3 . 0 0 \times 1 0 ^ { 8 }} \mathrm{m} / \mathrm{s}\right)$

ENERGY OF A PHOTON

$$
E=h v \quad \text { or } E=\frac{h c}{\lambda}, h=6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}
$$

$$
\begin{aligned}
& E=\text { energy of photon (Joules) } \\
& h=\text { Planck's Constant } \\
& V=\text { frequency of wave (Hz or s-1) }
\end{aligned}
$$

DON'T FORGET SI UNITS!

Multiplication Factor	Prefix	
Symbol		
$1,000,000,000$	$=10^{9}$	giga
$1,000,000$	$=10^{6}$	G
1,000	$=10^{3}$	mega
100	$=10^{2}$	kilo
1	$=1$	k
0.01	$=10^{-2}$	
0.001	$=10^{-3}$	centi
0.000001	$=10^{-6}$	c
0.00000001	$=10^{-9}$	milli
l	m	
	namo	μ
n		

Gigantic Megaphones Killed 1 Million Microscopic Nanobots

CALCULATIONS INVOLVING EMR

The wavelength of maximum visual acuity in humans is 550 nm . (green light)

What is the frequency of a single photon having this wavelength?

Multiplication Factor	Prefix	Symbol
$1,000,000,000=10^{9}$	giga	G
$1,000,000=10^{6}$	mega	M
$1,000=10^{3}$	kilo	k
$100=10^{2}$	hecto	h
$0.01=10^{-2}$	centi	c
$0.001=10^{-3}$	milli	m
$0.000001=10^{-6}$	micro	μ
$0.00000001=10^{-9}$	nano	n

21

CALCULATIONS INVOLVING EMR

The wavelength of maximum visual acuity in humans is 550 nm . (green light)

What is the energy of a single green photon having this wavelength?

What is the energy of a mole of green photons?

2. LINE SPECTRA OF ELEMENTS

UNIT 5 - ATOMIC STRUCTURE

CH4OS MR. WIEBE

1

RECAP...

- Light (EMR) can be categorized by wavelength and frequency into a spectrum.
-Max Planck noticed that when matter absorbs waves of EMR (ie. Heating up a metal object), it doesn't do so in a continuous fashion. It does so in "chunks" or quanta called photons.
- The energy contained by each photon is directly proportional to the frequency of the EMR.

RELATIONSHIP BETWEEN VARIABLES

Long
Wavelength
$=$

Low Frequency
=
Low ENERGY

Short
Wavelength
=
High Frequency
=
High ENERGY

3

CONTINUOUS SPECTRUM

When white light (such as light from the sun or from an incandescent light bulb) is passed through a prism, it produces a continuous spectrum of colours.

White light is comprised of photons of every wavelength in the visible spectrum.

CONTINUOUS SPECTRUM

Rainbows are formed when raindrops act as prisms, separating the sunlight into all its component wavelengths to produce a continuous spectrum of photons.

Refraction

FLAME COLOURS

When heat or electrical current are applied to samples of elements, different colours of light are produced.

Every element produces a distinctly unique colour.

ATOMIC LINE SPECTRA

When this light is passed though a prism, a line spectrum is produced rather than a continuous spectrum.

For example, when hydrogen atoms are excited and the light produced is passed through a prism, only 4 wavelengths of light are produced.

EMMISSION LINE SPECTRA

Every element has a unique line spectrum that can be used to identify them, like fingerprints.

EMMISION LINE SPECTRA

When light from space is collected and passed though a prism, much of the time the line spectra match the line spectrum of hydrogen.

This is how we know 99.9\% of our known universe is comprised of hydrogen.

WHY DOES THIS HAPPEN?

Remember that electrons are found in energy levels around the nucleus of atoms.

The farther away from the nucleus the electron (the higher the energy level), the more energy the electron must have to stay there.

WHY DOES THIS HAPPEN?

When an atom of hydrogen absorbs energy, the electron also increases in energy.

As a result, the electron gets promoted to a higher energy level. The atom is now in an excited state.

When the electron loses that energy, it returns to its natural energy level (ground state).

The energy lost as the electron falls is given off as a photon of light of equivalent energy.

> The time it takes for an electron to rise and fall is measured in zeptoseconds $\left(10^{-21}\right)!$

11

THE BALMER SERIES

THE BALMER SERIES

THE BOHR MODEL REVISED

3. ELECTRON CONFIGURATIONS

UNIT 5 - QUANTUM MODEL OF THE ATOM

CH4OS MR. WIEBE

1

REVIEW

$$
\begin{array}{ll}
n=4 \\
n=3 \\
n=2 & \text { Energy } \\
& \begin{array}{l}
\text { Levels } \\
\text { of } \\
\text { Hydrogen }
\end{array}
\end{array}
$$

$$
n=1
$$

Visible light transitions of the hydrogen atom.
shells or "orbits" of electron

IS IT REALLY THAT SIMPLE?

- Although it works grea for single-electron atoms, Bohr's model fails for atoms with 2 or more electrons!

- Ultimately, the failures of Bohr's model lay in the fact that he treated the electron as a particle rather than a wave!

MODIFYING THE BOHR MODEL

- Louis de Broglie made the leap that if light can behave as "wave-particles" or photons, then so can matter!
- He showed that the wavelength of a baseball is negligible (as expected), but that the wavelength of an electron was on the order of magnitude equal to that of electromagnetic radiation!
- This is what Bohr had missed - an atomic model must make use of the wave-nature of electrons to be complete!

Mode 1

Mode 2

3 nodes
2 antinode

4 nodes
3 antinode

5 nodes
4 antinodes

6 nodes
5 antinodes

The Schrödinger Wave Equation

WHAT PART OF

$i \hbar \frac{\partial}{\partial \mathrm{t}} \Psi(\bar{r})=\left[\frac{-\hbar^{2}}{2 \mathrm{~m}} \nabla^{2}+\mathrm{V}(\bar{\pi} \hat{t})\right] \Psi(\bar{\pi} t)$
DON'T YOU UNDERSTAND?

9

s orbitals

There is only 1 arrangement of an s orbital.

One s orbital is found in every energy level.

p orbitals

There are $\mathbf{3}$ arrangements of p orbitals.
Three p orbitals are found in energy levels after and including $\mathrm{n}=2$.

f orbitals

There are $\underline{\mathbf{7}}$ arrangements of forbitals

Seven forbitals are found in energy levels after and including $\mathrm{n}=4$.

THE PAULI EXCLUSION PRINCIPLE

Putting it Together

EACH ARRANGEMENT OF THE ORBITAL CAN

OTHER CONSIDERATIONS

2. Aufbau Principle

OTHER CONSIDERATIONS

3. Hund's Rule

VERTICAL ORBITAL DIAGRAMS

Determine the electron configuration for carbon.

\square
$3 s$ \square
4s
2p \square
2s \square
1 s \square

HORIZONTAL ORBITAL DIAGRAMS

Write carbon's electron configuration in a horizontal diagram.

An atom will either gain electrons to fill half-filled orbitals in an energy level or lose electrons to empty an energy level.

SUBLEVEL NOTATION

Write the electron configuration for oxygen in sublevel notation.
Horizontal Notation:

Sublevel Notation:

How many electrons does an oxygen atom need to gain or lose to achieve a stable electron configuration?

21

VALENCE ELECTRONS

Complete the orbital energy diagram below for iron and then write its electron configuration in sublevel notation. How many valence electrons does iron possess? How many unpaired electrons does it possess?
4s \square
3d \square
3s \square
\square
$3 p$
\square
2s \square
1s \square

ION SUBLEVEL NOTATION

Write the electron configuration for a chloride ion in sublevel notation.

$3 s$

$3 p$	\square	

$3 \mathrm{~s} \square$

2s \square

1s \qquad

ION SUBLEVEL NOTATION

Write the electron configuration for a manganese ion in sublevel notation.

\square
3p $\square \square \square$
3s
\square
2s

1s \qquad

SUMMARY

Energy Level	Sub-Energy Levels	Orbitals	Electrons in Each Orbital	Number of Electrons in Each Sub-Energy Level	Total Electrons in Energy Level
1	1s	1 s ,	2	2	2
2	2s, 2p	$1 \mathrm{~s}, 3 \mathrm{p}$'s	2	2, 6	8
3	3s, 3p, 3d	$1 \mathrm{~s}, 3 \mathrm{p}$'s, 5 d 's	2	2, 6, 10	18
4	4s, 4p, 4d, 4f	$1 \mathrm{~s}, 3 \mathrm{p}$'s, 5 d's, 7 f's	2	2, 6, 10, 14	32

4. THE PERIODIC TABLE \& ELECTRONS

CH4OS UNIT 5 - ATOMIC STRUCTURE MR. WIEBE

1

REVIEW QUIZ...

1. Write the sublevel notation electron configuration for an atom of copper (Cu).

2. Circle the valence electrons in your sublevel notation.
3. How many unpaired electrons are found in an atom of copper? Is copper magnetic or not?
4. Predict the most common ion of copper from your electron configuration. Write the electron configuration of this ion.

PERIODIC TABLE－BASIC ORGANIZATION

$\begin{gathered} \text { masam } \\ \mathbf{H} \end{gathered}$																		（ ${ }^{\text {mamm }}$
Li	Be												b	$\stackrel{\text { ctic }}{6}$	$\stackrel{\sim}{\text { c }}$	$\mathrm{O}_{0}^{8 .}$	$\stackrel{9}{\mathrm{a}}$	Ne
${ }^{11}$	\％												A					${ }^{18}$
Na	Mg												Al^{13}	$\stackrel{14}{\text { Si }}$	${ }_{P}^{15}$	${ }_{S}^{16}$	$\stackrel{17}{C l}$	${ }_{\text {Ar }}{ }^{18}$
			21	${ }_{22}$	${ }^{23}$	${ }^{\text {and }}$	${ }_{25}$	${ }_{26}{ }^{106}$	${ }_{27}^{\text {ama }}$	${ }_{28}^{\text {nata }}$	${ }_{29}{ }^{\text {mam }}$	${ }_{\text {and }}^{30}$	边	32	${ }^{33}$	${ }^{34}$	${ }^{35}$	${ }^{36}$
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	Sis			${ }^{\text {a }}$	${ }^{41}$	${ }^{42}$	4	${ }^{4}$	${ }_{4}$	${ }_{4}$	${ }^{47}$	cis	$4{ }^{\text {and }}$	${ }_{50}$	${ }^{51}$	仿	${ }_{53} 5$	54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1	Xe
${ }_{55}$			${ }^{\text {ctim }}$	${ }^{\text {an }}$	73	74	${ }^{\text {\％}}$	${ }^{76}$	${ }_{7}$	${ }^{\text {chem }}$	${ }_{79}$	${ }^{\text {mos }}$	811	${ }_{82}$	${ }^{\text {chem }}$	为	85	${ }_{86}{ }^{6}$
Cs	Ba	＊	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	隹									110	${ }^{111}$							
Fr	Ra	＊＊	Lr	Rf	Db	Sg	Bh	$\begin{aligned} & \text { Hs } \\ & \text { Hs } \end{aligned}$	Mt	Uun	Uuu	Uub		Uuq				

＊Lanthanide series
＊＊Actinide series

3

PERIODIC TABLE－HIDDEN PATTERNS

Nonmetals

THE BEAUTY OF THE PERIODIC TABLE

$4 f$
$5 f$

5

THE BEAUTY OF THE PERIODIC TABLE

The last electrons in the electron configuration correspond to the placement of the element in its specific "block".

For example - Magnesium [Ne] $3 \mathrm{~s}^{2}$ and found 2 jumps across the $3^{\text {rd }}$ period in the s -block!

SUBLEVEL NOTATION - COMPLETE CONFIGURATION

 Zinc (Zn)

7

SUBLEVEL NOTATION - NOBLE GAS CONGIGURATION Platinum (Pt)

5. PERIODIC PROPERTIES OF ELEMENTS

CH4OS UNIT 5 - ATOMIC STRUCTURE MR. WIEBE

REVIEW

What is the electron configuration of bismuth (Bi) in noble gas notation?

THE "PERIODIC" TABLE

"Periodicity" :

refers to similarities in behavior and reactivity due to similar outer shell electron configurations.

For example:
\checkmark All Alkali Metals have one half-filled s-orbital
\checkmark All Noble Gases have completely filled p-orbitals.

PERIODICITY OF ELECTRON CONFIGURATIONS

	$\begin{gathered} 1 \mathrm{~A} \\ 1 \end{gathered}$																	$\begin{gathered} 8 \mathrm{~A} \\ 18 \end{gathered}$
	1 \mathbf{H} $1 s^{1}$	$\begin{gathered} 2 \mathrm{~A} \\ 2 \end{gathered}$											$\begin{aligned} & 3 \mathrm{~A} \\ & 13 \end{aligned}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 14 \end{aligned}$	$\begin{aligned} & 5 \mathrm{~A} \\ & 15 \end{aligned}$	$\begin{aligned} & 6 \mathrm{~A} \\ & 16 \end{aligned}$	$\begin{aligned} & 7 \mathrm{~A} \\ & 17 \end{aligned}$	$\underset{1}{\text { He }}$
Core $[\mathrm{He}]$	$\begin{gathered} 3 \\ \mathbf{L i} \\ 2 s^{1} \end{gathered}$	$\begin{gathered} 4 \\ \mathrm{Be} \\ 2 s^{2} \end{gathered}$											$\begin{gathered} 5 \\ \mathbf{B} \\ 2 s^{2} 2 p^{1} \end{gathered}$	$\underset{2 s^{2} 2 p^{2}}{\stackrel{6}{\mathrm{C}}}$		$\begin{gathered} 8 \\ \mathbf{O} \\ 2 s^{2} 2 p^{4} \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ 2 s^{2} 2 p^{5} \end{gathered}$	$\begin{gathered} 10 \\ \mathrm{Ne} \\ 2 s^{2} 2 p^{6} \end{gathered}$
[Ne]	$\begin{gathered} 11 \\ \mathrm{Na} \\ 3 s^{1} \end{gathered}$	$\begin{gathered} 12 \\ \mathbf{M g} \\ 3 s^{2} \end{gathered}$	$\begin{gathered} 3 \mathrm{~B} \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \text { 4B } \\ 4 \end{gathered}$	$\begin{gathered} \text { 5B } \\ 5 \\ \hline \end{gathered}$	$\begin{gathered} \text { 6B } \\ 6 \end{gathered}$	$\begin{gathered} 7 B \\ 7 \\ \hline \end{gathered}$	8	8 B 9	10	$\begin{aligned} & \text { 1B } \\ & 11 \\ & \hline \end{aligned}$	$\begin{aligned} & 2 B \\ & 12 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 13 \\ \text { Al } \\ 3 s^{2} 3 p^{1} \end{array}$	$\begin{array}{\|c} 14 \\ \mathrm{Si} \\ 3 s^{2} 3 p^{2} \end{array}$	$\begin{gathered} 15 \\ \mathbf{P} \\ 3 s^{2} 3 p^{3} \end{gathered}$	$\underset{\substack{16 \\ S s^{2} 3 p^{4}}}{ }$	$\underset{\substack{17 \\ \mathrm{Cs}^{2} 3 p^{5}}}{ }$	$\underset{\substack{18 \\ \mathbf{A s}^{3} 3 p^{6} \\ \hline}}{\text { an }}$
[Ar]	19 \mathbf{K} $4 s^{1}$	$\begin{aligned} & 20 \\ & \mathrm{Ca} \\ & 4 s^{2} \end{aligned}$	$\begin{gathered} 21 \\ \mathrm{Sc} \\ 4 s^{2} 3 d^{1} \end{gathered}$	$\begin{gathered} 22 \\ \mathbf{T i} \\ 4 s^{2} 3 d^{2} \end{gathered}$	$\underset{\substack{2 \\ \mathbf{V} 3 d^{3}}}{23}$	$\begin{gathered} 24 \\ \mathbf{C s}^{1} 3 d^{5} \end{gathered}$	$\begin{gathered} 25 \\ \mathbf{M n} \\ 4 s^{2} 3 d^{5} \end{gathered}$	$\begin{gathered} 26 \\ \mathrm{Fe} \\ 4 s^{2} 3 d^{6} \end{gathered}$	$\begin{array}{\|c\|} \hline 27 \\ \text { Co } \\ 4 s^{2} 3 d^{7} \end{array}$	$\begin{gathered} 28 \\ \mathbf{N i} \\ \mathbf{N s}^{2} 3 d^{8} \end{gathered}$	$\begin{gathered} 29 \\ \mathbf{C u}_{4 s^{1} 3 d^{10}} \end{gathered}$	$\begin{gathered} 30 \\ \mathbf{Z n} \\ 4 \mathrm{~s}^{2} 3 d^{10} \end{gathered}$	$\begin{gathered} 31 \\ \mathbf{G a} \\ 4 s^{2} 3 d^{10} \\ 4 p^{1} \\ \hline \end{gathered}$	$\begin{gathered} 32 \\ \mathbf{G e} \\ 45^{2} 3 d^{10} \\ 4 p^{2} \end{gathered}$	$\begin{gathered} 33 \\ \text { As } \\ 4 s^{2} 3 d^{10} \\ 4 p^{3} \\ \hline \end{gathered}$	$\begin{gathered} 34 \\ \mathrm{Se} \\ 4 \mathrm{~s}^{2} 3 d^{10} \\ 4 p^{4} \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br}^{10} \\ 4 \mathrm{~s}^{2} 3 d^{10} \\ 4 p^{5} \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 36 \\ \mathrm{Kr} \\ 4 s^{2} 3 d^{10} \\ 4 p^{6} \\ \hline \end{array}$
[Kr]	37 $\mathbf{R b}$ $5 s^{1}$	$\begin{aligned} & 38 \\ & \mathrm{Sr} \\ & 5 s^{2} \end{aligned}$	$\begin{array}{\|c} 39 \\ \mathbf{Y} \\ 5 s^{2} 4 d^{1} \end{array}$	$\begin{gathered} 40 \\ \mathbf{Z r} \\ 5 s^{2} 4 d^{2} \end{gathered}$	$\begin{gathered} 41 \\ \mathbf{N b} \\ 5 s^{2} 4 d^{3} \end{gathered}$	$\begin{gathered} 42 \\ \underset{5 s^{1} d d^{5}}{\mathbf{M o}} \end{gathered}$	$\begin{gathered} 43 \\ \mathbf{T c} \\ 5 s^{2} 4 d^{5} \end{gathered}$	$\begin{gathered} 44 \\ \mathrm{Ru} \\ 55^{1} 4 d^{7} \end{gathered}$	$\begin{array}{\|c} 45 \\ \text { Rh } \\ 5 s^{2} 4 d^{8} \end{array}$	$\begin{gathered} 46 \\ \text { Pd } \\ 4 d^{10} \end{gathered}$	$\begin{array}{\|c} 47 \\ \mathbf{A s}^{\mathbf{A}} 4 d^{10} \end{array}$	$\begin{gathered} 48 \\ \mathrm{Cd} \\ 55^{2} 4 d^{10} \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ 5 s^{2} 4 d^{10} \\ 5 p^{10} \end{gathered}$	$\begin{gathered} 50 \\ \text { Sn } \\ 55^{2} 4 d^{10} \\ 5 p^{2} \end{gathered}$	$\begin{gathered} 51 \\ \text { Sb } \\ 5 s^{2} 4 d^{10} \\ 5 p^{3} \end{gathered}$	$\begin{gathered} 52 \\ \mathbf{T e} \\ 5 s^{2} 4 d^{10} \\ 54^{4} \\ \hline \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ 5 s^{2} 4 d^{10} \\ 5 p^{5} \end{gathered}$	$\begin{gathered} 54 \\ \text { Xe } \\ 5 s^{2} 4 d^{10} \\ 5 p^{6} \end{gathered}$

TRENDS IN ATOMIC PROPERTIES -DEFINITIONS

Ionization Energy

Atomic Radius
the energy required to remove the last electron from an atom

Distance from nucleus to the outermost orbital in an atom (pretty much...)

IONIZATION ENERGY

IONIZATION ENERGY

Tends to INCREASE across a period

ATOMIC NUMBER

Explanation:

Number of protons in nucleus increases, the attraction to valence increases, harder to remove.
(Coulomb's Law)

IONIZATION ENERGY

Tends to DECREASE down a group

Explanation:
Outer electrons are farther from the nucleus, have less attraction and are easier to remove. (Coulomb's Law)

9

SUCCESSIVE IONIZATION ENERGIES - SULPHUR

Element	I_{1}	I_{2}	I_{3}	I_{4}	I_{5}	I_{6}	I_{7}
S	1000	2252	3357	4556	7004	8496	27,107

- Every time an electron is removed from an orbital in a specific energy level, the remaining valence electrons have less repulsion and more attraction to nucleus.
- This makes subsequent electrons harder to remove, causing an increase in ionization energy.

SUCCESSIVE IONIZATION ENERGIES - SODIUM

$\mathbf{1}^{\text {st }}$	$\mathbf{2}^{\text {nd }}$	$\mathbf{3}^{\text {rd }}$	$\mathbf{4}^{\text {th }}$	$\mathbf{5}^{\text {th }}$	$\mathbf{6}^{\text {th }}$	$\mathbf{7}^{\text {th }}$	$\mathbf{8}^{\text {th }}$	$\mathbf{9}^{\text {th }}$	$\mathbf{1 0}^{\text {th }}$	$\mathbf{1 1}^{\text {th }}$
496	4562	6912	9543	13353	16610	20114	25490	28933	141360	159074

11

ATOMIC RADIUS

ATOMIC RADIUS
 Radius INCREASE down a group

Explanation:
Each row on the periodic table adds a new energy level to the atom further from the nucleus.

ATOMIC RADIUS

 Radius DECREASE across a period

Explanation:
Number of protons in nucleus increases, increasing attraction \& causing the electrons to get "pulled in".

WATCH THIS...

Potassium is (more/less) reactive than sodium? Why?

Na
Sodum

Calcium is (more/less) reactive than potassium? Why?

CHALLENGE

Use the following collection of elements to answer the following questions:

Sodium, sulphur, calcium, chlorine, argon, potassium

1. Arrange the elements in order of increasing atomic radius.
2. Arrange the elements in order of decreasing ionization energy.
3. Potassium is more reactive than sodium. Give one possible explanation for this.
4. Calcium is less reactive than potassium. Give one possible explanation for this.
Periodic Chart of Ions

${ }^{58} \mathrm{Ce}^{3+}$	${ }_{\substack{\text { praseodymium }}}^{\mathbf{P r}^{3+}}$	60	61	${ }^{62} \underset{\text { samarium (III) }}{\mathbf{S m}^{3+}}$	${ }_{\text {europium (III) }}^{63} \mathrm{Eu}^{3+}$	${ }^{64} \underset{\text { gadolinium }}{\mathbf{G d}^{3+}}$	65	66	67	68	69	70	71
		$\mathbf{N d}^{3+}$	Pm^{3+}				Tb ${ }^{3+}$	$D y^{3+}$	Ho^{3+}	$E r^{3+}$	Tm ${ }^{3+}$	Yb^{3+} ytterbium (III)	
		neodymium	promethium	$\mathbf{S m}_{\text {samium(II) }}^{2+}$	$\underset{\text { europium(II) }}{\text { Eun }^{2+--}}$		terbium	dysprosium	holmium	erbium	thulium	$\mathbf{Y b}^{2+}$ ytterbium (II)	lutetium
90	91	92	93	94	95	9	97	98	99	10	101	102	103
Th ${ }^{4}$	$\begin{gathered} \mathbf{P a}^{\mathbf{5}} \\ \text { protactinum } \end{gathered}$	$\begin{gathered} \mathbf{U}^{6+} \\ \end{gathered}$	Np ${ }^{5}$	$\underset{\text { plutonium (IV) }}{\mathbf{P u}^{4+}}$	$\underset{\text { americium (III) }}{\mathbf{A m}^{3+}}$	Cm^{3+}	$\underset{\text { berkelium (III) }}{\mathbf{B K}^{3+}}$	Cf	$E s^{3+}$	Fm ${ }^{3+}$	$\underset{\text { mendelevium(1) }}{\mathbf{M d}^{2+}}$	$\underset{\text { nobelium (II) }}{\mathrm{No}^{2+}}$	Gd ${ }^{3+}$
thorium	Pa^{4+4} protactinium(IV)	$\mathbf{U}^{4 \dot{4}}$ uranium (IV)	neptunium		$\underset{\text { americium (IV) }}{\text { Al }^{4+}}$	curium	$\underset{\text { berkelium (IV) }}{\mathbf{B k}^{4+-}}$	californium	einsteinium	$\mathrm{Fm}_{\text {fermium }}$	$\underset{\text { mendelevium (III) }}{ }$	No^{3+} nobelium (III)	lawrencium

PERIODIC TABLE OF THE ELEMENTS

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
$\begin{gathered} 1 \\ \mathbf{H} \\ \text { Hydrogen } \\ 1.0 \end{gathered}$																	$\begin{gathered} 2 \\ \mathrm{He} \\ \text { Hellum } \\ 4.0 \end{gathered}$
$\stackrel{3}{\mathrm{Li}}$ Lithium 6.9	4 Be Beryllium 9.0					$\begin{aligned} & \text { Silicon } \\ & 28.1 \end{aligned}$	$\begin{aligned} & \text { - Symb } \\ & \text { - Name } \\ & \text { Atom } \end{aligned}$					$\begin{gathered} 5 \\ \text { B } \\ \text { Boron } \\ 10.8 \end{gathered}$	$\begin{gathered} \text { C } \\ \text { Carbon } \\ 12.0 \end{gathered}$	$\begin{gathered} 7 \\ \mathrm{~N} \\ \text { Nitrogen } \\ 14.0 \end{gathered}$	$\begin{gathered} 8 \\ \text { O } \\ \text { Oxygen } \\ 16.0 \end{gathered}$	$\begin{gathered} 9 \\ \mathbf{F} \\ \text { Fuborine } \\ 19.0 \end{gathered}$	10 Ne Neon 20.2
$\begin{gathered} 11 \\ \mathrm{Na} \\ \text { Sadium } \\ 23.0 \end{gathered}$	$\mathbf{1 2}$ $\mathbf{M g}$ Magnesium 24.3											13 $\mathbf{A l}$ Aluminum 27.0	$\begin{gathered} 14 \\ \hline \mathrm{Si} \\ \text { Silicon } \\ 28.1 \end{gathered}$	15 \mathbf{P} Phosphous 31.0	$\begin{gathered} 16 \\ \mathbf{S} \\ \text { Suphur } \\ 32.1 \end{gathered}$	$\begin{gathered} 17 \\ \mathrm{Cl} \\ \text { Chlơine } \\ 35.5 \end{gathered}$	$\begin{aligned} & 18 \\ & \mathrm{Ar} \\ & \text { Argon } \\ & 39.9 \end{aligned}$
$\begin{gathered} 19 \\ \mathbf{K} \\ \text { Potassium } \\ 39.1 \end{gathered}$	$\begin{gathered} \hline 20 \\ \mathrm{Ca} \\ \text { Calcium } \\ 40.1 \end{gathered}$	$\begin{gathered} 21 \\ \text { Sc } \\ \text { Scandium } \\ 45.0 \end{gathered}$	$\begin{gathered} \hline 22 \\ \mathrm{Ti} \\ \text { Thanium } \\ 47.9 \end{gathered}$	$\begin{gathered} 23 \\ \mathbf{V} \\ \text { Vanadium } \\ 50.9 \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{Cr} \\ \text { Chromium } \\ 52.0 \end{gathered}$	$\begin{gathered} 25 \\ \text { Mn } \\ \text { Manganese } \\ 54.9 \end{gathered}$	$\begin{aligned} & 26 \\ & \mathrm{Fe} \\ & \text { lion } \\ & 55.8 \end{aligned}$	$\begin{aligned} & 27 \\ & \text { Co } \\ & \text { Cobat } \\ & 58.9 \end{aligned}$	$\begin{gathered} 28 \\ \mathrm{Ni} \\ \text { Nickel } \\ 58.7 \end{gathered}$	$\begin{aligned} & \hline 29 \\ & \mathrm{Cu} \\ & \text { Copper } \\ & 63.5 \end{aligned}$	$\begin{gathered} 30 \\ \text { Zn } \\ \text { Znin } \\ 65.4 \end{gathered}$	31 Ga Gallium 69.7	$\begin{gathered} 32 \\ \mathrm{Ge} \\ \text { Germanium } \\ 72.6 \end{gathered}$	33 As Asenic 74.9	$\begin{gathered} 34 \\ \text { Se } \\ \text { Selenium } \\ 79.0 \end{gathered}$	$\begin{gathered} 35 \\ \mathrm{Br} \\ \text { Bromine } \\ 79.9 \end{gathered}$	$\begin{gathered} \hline 36 \\ \text { Kr } \\ \text { Kyppoton } \\ 83.8 \end{gathered}$
$\begin{gathered} 37 \\ \text { Rb } \\ \text { Rubidum } \\ 85.5 \end{gathered}$	$\begin{gathered} 38 \\ \mathrm{Sr} \\ \text { Stronium } \\ 87.6 \end{gathered}$	$\begin{gathered} \hline 39 \\ \mathbf{Y} \\ \text { Y Ytrium } \\ 88.9 \end{gathered}$	$\begin{gathered} 40 \\ \text { Zr } \\ \text { Zriconium } \\ 91.2 \end{gathered}$	$\begin{gathered} \hline 41 \\ \mathrm{Nb} \\ \text { Niboum } \\ 92.9 \end{gathered}$	42 Mo Molydonum 95.9	$\begin{gathered} \hline 43 \\ \text { Tc } \\ \text { Technetium } \\ (98) \end{gathered}$	$\begin{gathered} 44 \\ \text { Ru } \\ \text { Ruthenium } \\ 101.1 \end{gathered}$	$\begin{gathered} \hline 45 \\ \text { Rh } \\ \text { Rhhdium } \\ 102.9 \end{gathered}$	$\begin{gathered} 46 \\ \text { Pd } \\ \text { Palladum } \\ 106.4 \end{gathered}$	$\begin{array}{r} 47 \\ \mathbf{A g} \\ \text { siver } \\ 107.9 \end{array}$	$\begin{gathered} 48 \\ \text { Cd } \\ \text { Cadmum } \\ 112.4 \end{gathered}$	$\begin{gathered} 49 \\ \text { In } \\ \text { Indium } \\ 114.8 \end{gathered}$	$\begin{gathered} \hline 50 \\ S n \\ \operatorname{Tin}^{2} \\ 118.7 \end{gathered}$	51 Sb Antimony 121.8	$\begin{gathered} 52 \\ \mathrm{Te} \\ \text { Tellurum } \\ 127.6 \end{gathered}$	$\begin{gathered} 53 \\ \text { I } \\ \text { lodine } \\ 126.9 \end{gathered}$	$\begin{aligned} & \hline 54 \\ & \text { Xe } \\ & \text { Xenon } \\ & 131.3 \end{aligned}$
$\begin{gathered} 55 \\ \text { Cs } \\ \text { Cesium } \\ 132.9 \end{gathered}$	56 Ba Barium 137.3	57 La Lanthanum 138.9	72 Hf Hatnium 178.5	$\begin{gathered} 73 \\ \text { Ta } \\ \text { Tantaum } \\ 180.9 \end{gathered}$	$\begin{gathered} \hline 74 \\ \text { W } \\ \text { Tungsten } \\ 183.8 \end{gathered}$	75 Re Rhenium 186.2	$\begin{gathered} 76 \\ \text { Os } \\ \text { Osmium } \\ 190.2 \end{gathered}$	$\begin{gathered} \hline 77 \\ \mathbf{~ I r} \\ \text { Indium } \\ 192.2 \end{gathered}$	$\begin{gathered} 78 \\ \text { Pt } \\ \text { Platium } \\ 195.1 \end{gathered}$	$\begin{gathered} \hline 79 \\ \mathrm{Au} \\ \text { Gold } \\ 197.0 \end{gathered}$	$\begin{gathered} 80 \\ \mathrm{Hg} \\ \text { Mercury } \\ 200.6 \end{gathered}$	$\begin{gathered} \hline 81 \\ \mathrm{TI} \\ \text { Thallum } \\ 204.4 \end{gathered}$	$\begin{gathered} \hline 82 \\ \text { Pb } \\ \text { Lead } \\ 207.2 \end{gathered}$	$\begin{gathered} \hline 83 \\ \mathrm{Bi} \\ \text { Bismuth } \\ 209.0 \end{gathered}$	84 Po Polonium (209)	$\begin{gathered} 85 \\ \mathbf{A t} \\ \text { Astane } \\ (210) \end{gathered}$	$\begin{gathered} \hline 86 \\ \text { Rn } \\ \text { Radon } \\ \text { (222) } \end{gathered}$
$\begin{gathered} 87 \\ \text { Fr } \\ \text { Francium } \\ (223) \end{gathered}$	88 Ra Radium (226)	89 Ac Actinium (227)	104 $\mathbf{R f}$ Rutheroforium (261)	$\begin{gathered} \hline 105 \\ \text { Db } \\ \text { Dubrium } \\ \text { (262) } \end{gathered}$	$\begin{gathered} 106 \\ \mathrm{Sg} \\ \text { Seaborgum } \\ (263) \end{gathered}$	107 Bh Bohrium (262)	$\begin{gathered} 108 \\ \text { Hs } \\ \text { Hassium } \\ (265) \end{gathered}$	$\begin{gathered} \hline 109 \\ \mathrm{Mt} \\ \text { Metherium } \\ (266) \end{gathered}$									

Based on mass of C^{12} at 12.00.	$\begin{gathered} 58 \\ \mathrm{Ce} \\ \text { Cerium } \\ 140.1 \\ \hline \end{gathered}$		60 Nd Neodyrium 144.2	61 Pm Promethium (145)	$\begin{gathered} 62 \\ \text { Sm } \\ \text { Samaium } \\ 150.4 \\ \hline \end{gathered}$	$\begin{gathered} 63 \\ \text { Eu } \\ \text { Europium } \\ 152.0 \\ \hline \end{gathered}$		$\begin{gathered} 65 \\ \text { Tb } \\ \text { Tetbium } \\ 158.9 \\ \hline \end{gathered}$	66 Dy Dysposium 162.5	$\begin{gathered} 67 \\ \text { Ho } \\ \text { Holmium } \\ 164.9 \\ \hline \end{gathered}$	$\begin{gathered} 68 \\ \text { Er } \\ \text { Erium } \\ 167.3 \\ \hline \end{gathered}$	$\begin{gathered} 69 \\ \text { Tm } \\ \text { Thuium } \\ 168.9 \\ \hline \end{gathered}$	$\begin{gathered} 70 \\ \text { Yb } \\ \text { Ytebibium } \\ 173.0 \\ \hline \end{gathered}$	$\begin{gathered} 71 \\ \text { Lu } \\ \text { Lutetium } \\ 175.0 \\ \hline \end{gathered}$
Values in parentheses are the masses of the most stable or best known isotopes for elements which do not occur naturally.	$\begin{gathered} 90 \\ \text { Th } \\ \text { Thorium } \\ 232.0 \\ \hline \end{gathered}$		$\begin{gathered} 92 \\ \mathbf{U} \\ \text { U Uranium } \\ 238.0 \\ \hline \end{gathered}$		$\begin{gathered} 94 \\ \text { Pu } \\ \text { Plutorium } \\ (244) \\ \hline \end{gathered}$	$\begin{gathered} 95 \\ \text { Am } \\ \text { Ameicicum } \\ (243) \end{gathered}$	96 Cm Curum (247)	$\begin{gathered} 97 \\ \text { Bk } \\ \text { Benelelum } \\ (247) \\ \hline \end{gathered}$	$\begin{gathered} 98 \\ \text { Cf } \\ \text { Callifonium } \\ (251) \\ \hline \end{gathered}$	$\begin{gathered} 99 \\ \text { Es } \\ \text { Enstenium } \\ (252) \\ \hline \end{gathered}$	100 Fm Ferrium (257)	101 $\substack{\text { Md } \\ \text { Mendelerium } \\(258)}$		103 $\mathbf{L r}$ Lawrencium (262)

